2003 4th QUARTER GROUNDWATER MONITORING REPORT

FOR

FORMER ANGELES CHEMICAL COMPANY FACILITY 8915 SORENSEN AVENUE SANTA FE SPRINGS, CALIFORNIA

Prepared by:
Blakely Environmental Investigations, Inc.
4359 Phelan Road
Phelan, CA 92371
(760)-868-8572

David A. Blakely Sr. Scientist REA II #20025

Hiram D. Garcia REA II #20048

February 10, 2004

rames V. Jaznum 22847

No. C 22847

Exp: 12-31-05

TABLE OF CONTENTS

1.0)	INTRO	DDUCTION	1
2.0)	SITE I	LOCATION AND HISTORY	1
3.0)	REGIO	ONAL GEOLOGY/HYDROGEOLOGY	4
4.0)	SITE	GEOLOGY/HYDROGEOLOGY	5
5.0)	5.1) 5.2) 5.3)	NDWATER MONITORING PROTOCOL Well Purging and Measurement of Field Parameters Well Sampling Sample Handling Waste Management	5 7 8 8 9
6.0)	FREE	PRODUCT REMOVAL	9
7.0)	GROU	INDWATER SAMPLE RESULTS	9
8.0)	CONC	CLUSIONS	13
9.0)	RECO	OMMENDATIONS	13
FIGU	RES		
Figure Figure Figure Figure Figure Figure Figure Figure Figure	e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9	Site Location Map Well Location Map Gasper Groundwater Gradient Map Gage/Hollydale Groundwater Gradient Map TPH-g and BTEX Concentrations in Gasper Aquifer TPH-g and BTEX Concentrations in Gage/Hollydale Aquifer Chlorinated VOC Concentrations in Gasper Aquifer Chlorinated VOC Concentrations in Gage/Hollydale Aquifer Acetone, MEK, and Methylene Chloride in Gasper Aquifer Acetone, MEK, and Methylene Chloride in Gage/Hollydale Acetone Chloride in Gage/Hollydale Acetone Chloride in Gage/Hollydale Acetone Chloride in Gage/Hollydale Acetone Chloride in Gage/Hollydale Chloride in Gage/Hollydale Chloride in Gage/Holl	quifer

APPENDICES

Appendix A Field Sampling Logs
Appendix B Groundwater Laboratory Analysis Results

1.0) INTRODUCTION

Blakely Environmental Investigations, Inc. (BEII) was contracted by Greve Financial Services ((310) 753-5770) to perform quarterly groundwater monitoring at the former Angeles Chemical Company (ACC), Inc. facility located at 8915 Sorensen Avenue, Santa Fc Springs, California (See Figure 1, Site Location Map). The quarterly groundwater monitoring was requested by the Department of Toxics Substance Control (DTSC) correspondence dated September 18, 2001. This report presents the results of the 2003 3rd quarter monitoring episode performed from December 9 through 11, and 15 of 2003.

2.0) SITE LOCATION AND HISTORY

The site is approximately 1.8 acres in size and completely fenced. The site is bound by Sorensen Avenue on the east, Air Liquide Corporation to the north and northwest, Plastall Metals Corporation to the north, and a Southern Pacific Railroad easement and Mckesson Chemical Company to the south.

The property was owned by Southern Pacific Transportation Company and was not developed until 1976.

The ACC has operated as a chemical repackaging facility since 1976. A total of thirty-four (34) underground storage tanks (USTs) existed beneath the site. Two (2) USTs, one gasoline and one diesel, and sixteen (16) chemical USTs were excavated and removed under the oversight of the Santa Fe Springs Fire Department. All 16 remaining chemical USTs were decommissioned in place and slurry filled.

In January 1990, SCS Engineers, Inc. (SCS) conducted a site investigation. SCS advanced eight borings from 5' below grade (bg) to 50' bg. Soil samples collected and analyzed identified benzene, 1,1-Dichloroethane (1,1-DCA), 1,1-Dichloroethane (1,1-DCE), MEK, methyl isobutyl ketone (MIBK), toluene, 1,1,1 Trichloroethane (1,1,1-TCA), Tetrachloroethylene (PCE), and xylenes at detectable concentrations.

In June 1990, SCS performed an additional site investigation at the site by advancing six additional borings advanced from 20.5' bg to 60' bg. A monitoring well (MW-1) was also installed. Soil sample analysis identified detectable concentrations of the above mentioned VOCs in addition to acetone and methylene chloride. Dissolved benzene, 1,1-DCA, 1,1-DCE, PCE, Trichloroethylene (TCE), and trans-1,2-dichloroethene were detected in MW-1 above maximum contaminant levels.

Between 1993 and 1994, SCS performed further testing at the site. Soil samples were collected from nine borings. Five borings were converted to groundwater monitoring wells MW-2, MW-3, MW-4, MW-6, and MW-7 (See Figure 2, Well Location Map). The predominant compounds detected in soil were acetone, MEK, MIBK, PCE, toluene, 1,1,1-TCA, TCE, and xylenes. Groundwater sample collection performed in

February 1994 by SCS identified the following using EPA method 624 (laboratory results included in Remedial Investigation Report dated August 1994 by SCS):

Company Ambaga	VAV.	11.2 (1.7.2.5±2)	N/NN/=1t	YNY (MANAGE MANAGE
Walk and Branzone Market		C=11(010)	(4)	skille	
1,1-DCA	649	1,130	85	1,410	2,260 2,130
並不是的根本的概念。 1625-1076人的影響的概念	100	F0101	- 500		的和 的数据(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
1,1-DCE	2,210	2,460	2,800	806	151
Estate Villally Uparzente		1.724		11,418(0).	建設的 的 新規模型 医 促性
Methylene Chloride	1,220	2,980	6,530	4,760	21,400 <50
25 PG 10	101622	2,150	317,317(0)	, (7.1.2(d).	256 0 286 6 104 (2)
Toluene	560	\$2 7,390	579	12,700	13,500 398
MARK TO THE PROPERTY OF THE PARTY OF THE PAR	23/0	3.4740	77 ZMZ	3/63,2410	100 (00 (10 (00 (10 (00 (10 (00 (10 (00 (10 (00 (10 (00 (10 (1
TCE	7,160	3,040	1,730	14,300	##1,320 × 45 × 45
ESPERATE STATES	1.75(0)	7.790	E(O)	4,42	建大约000基础高速 1892条件
Units	μg/L	μg/L	µg/L	νομ<u>έ</u>/L	, րե/Մրե/Մ

In 1996, SCS performed separate soil vapor extraction pilot testing beneath the site at approximately 10' bg and 22' bg. Laboratory analysis identified maximum soil vapor gas concentrations as 1,1,1-TCA (30,300 ppmV) with detectable concentrations of 1,1-DCE, TCE, methylene chloride, toluene, PCE and xylenes. The maximum radius of influence from the various extraction units used were measured as 35 feet at 10' bg and 80 feet at 22' bg.

In November 1997, SCS performed a soil vapor survey at the site. Soil vapor samples were collected at twenty-three locations at 5' bg. In addition, soil vapor samples were collected at 15' bg in five of the twelve sampling points. The soil vapor survey identified maximum volatile organic compound (VOC) contaminants near the railroad tracks on site, the location where a rail tanker reportedly had an accidental release.

In July 2000, BEII contracted BLC Surveying, Inc. to perform a site survey. Well locations were recorded using the California Plane coordinate systems. A copy of the survey is on file with the DTSC.

In September 2000, Blaine Tech Services, Inc. gauged the six on-site monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-6, and MW-7) under the supervision of BEII. Free product (FP) was identified in monitoring well MW-4 at 0.21-feet in thickness. Approximately 0.5 liters of FP were removed from the well and placed in a sealed 55-gallon drum.

BEII performed a soil vapor gas survey at the site from November 27 to December 1, 2000. A total of 36 soil vapor sample points, labeled SV1 through SV36, were selected by BEII and approved by the DTSC for analysis. Two discrete soil vapor samples were collected from each soil vapor sample point, one at 8' bg and one at 20' bg. SV1 was an exception since the first soil vapor sample was collected at 10' bg instead of

8' bg. Based on the soil vapor sample results, BEII identified relatively low level concentrations of VOCs in the silty clay soils at 8' bg. However, the concentrations of VOCs are significantly higher in the sandy soils at 20' bg in OU-1. Results were submitted to the DTSC by BEII in a Report of Findings dated January 10, 2001 with laboratory reports (BEII Report of Findings dated January 10, 2001).

On November 30, 2000, Blaine Tech Services, Inc. (Blaine) was contracted to perform groundwater sampling at the site. Groundwater monitoring wells MW-4 and MW-6 identified were not sampled due to the presence of free product. These wells were installed to monitor a perched groundwater body to the north. Free product was identified in MW-1 during sample collection, upon completion of well purging. The potentiometric groundwater level was above the well screen. Groundwater purging lowered the potentiometric level below the screened interval, allowing free product to enter. Groundwater sample analysis identified thirteen constituents of concern (COCs) in the dissolved phase as VOCs only. Laboratory analysis of metals and SVOCs identified concentrations below allowable levels for those constituents. Results were submitted by BEII to the DTSC in a Report of Findings dated January 10, 2001 with laboratory reports.

The remaining USTs have been excavated or slurry filled for closure under the supervision of the Santa Fe Springs fire Department. A report was be submitted to the DTSC upon completion by EREMCO.

BEII performed a soil gas survey on the ACC site from January 14 to January 17, 2002. The purpose of the soil gas survey was to determine the lateral extent of VOC soil vapors in the vadose zone along the eastern, northern, and southern property line of the site (OU-1 an OU-2). In addition, BEII performed a SGS on June 13, 2002 on the Air Liquide property to determine the lateral extent of VOC soil vapors in the vadose zone north of the ACC facility (OU-1). Based on the soil gas survey results, BEII identified relatively low level concentrations of VOCs in the silty clay soils at 5' bg, 7'bg, 8' bg, 10' bg, and 12' bg (See Table 1 through Table 3 for soil gas results). However, the concentrations of VOCs are significantly higher in the sandy soils at 20' bg, which are more permeable and conducive to soil vapor migration. Furthermore, VOC soil gas concentrations were higher along the southern property line (OU-2) than along the east and north property line. Results were submitted by BEII to the DTSC in a Report of Findings dated October 15, 2002 with laboratory reports.

BEII advanced two soil borings (BSB-1 and BSB-2) and installed two groundwater monitoring wells (MW-8 and MW-9) on the ACC site from June 5 to June 7, 2002. The purpose of the drilling was to help define the lateral and vertical extent of impacted soil along the eastern ACC property line and to help determine the extent of impacted groundwater. Soil borings BSB-1 and BSB-2 were advanced to 50' bg and 30' bg, respectively. Monitoring wells MW-8 and MW-9 were installed to 40.5' bg and 45.5' bg, respectively. Soil sample results identified only four VOCs in the upper clay layer from 0' to approximately 20' bg. Total VOC soil concentrations averaged 56.66 µg/kg in the upper clay zone. Soil sample results identified elevated VOC concentrations in sand

with lower to no detectable concentrations in the underlying clay layer. The average total VOC soil concentrations were 53,125 μ g/kg in the permeable sand layer. The underlying clay layer identified an average total VOC soil concentration of 408 μ g/kg. Results were submitted by BEII to the DTSC in a Report of Findings dated October 15, 2002 with laboratory reports.

BEII advanced eight soil borings (BSB-3 through BSB-10) from 40' bg to 45' bg in August 2002 to help determine the extent of impacted soil. Laboratory results were submitted by BEII to the DTSC.

In November and December of 2002, BEII advanced seven borings (BSB-11 through BSB-17) and installed twelve monitoring wells (MW-10 through MW-21) to help define the extent of VOC impacted soil and groundwater. Monitoring well MW-1 was abandoned. Laboratory results were submitted by BEII to the DTSC.

In late June of 2003, BEII installed five monitoring wells (MW-22 through MW-26) to help define the extent of VOC impacted soil and groundwater. Monitoring wells MW-2, MW-3, and MW-7 were abandoned. Laboratory results were submitted by BEII to the DTSC.

3.0) REGIONAL GEOLOGY/HYDROGEOLOGY

The site is located near the northern boundary of the Santa Fe Springs Plain within the Los Angeles Coastal Plain at an elevation of approximately 150 feet above mean sea level. Surficial sediments consist of fluvial deposits composed of inter-bedded gravel, sand, silt, and clay. Available data from California Water Resources Bulletin No. 104 (June 1961) indicate that the surficial sediments may be Holocene and/or part of the upper Pleistocene Lakewood Formation, which ranges from 40 to 50 feet thick beneath the site. The Lakewood Formation has lateral lithologic changes with discontinuous permeable zones that vary in particle size. Stratified deposits of sand, silty sand, silt, and fine gravel comprising the upper portion of the lower Pleistocene San Pedro Formation underlies the Lakewood Formation.

The site lies within the Central Basin Pressure area, a division of the Central Ground Water Basin, which extends over most of the Coastal Plain. The Gasper aquifer, a part of the basal coarse unit of Holocene deposits, is found within old channels of the San Gabriel and other rivers. The Gasper aquifer may be 40-feet in thickness, with its base at a depth of about 80 to 100-feet bg. The underlying Gage aquifer is found within the Pleistocene Lakewood Formation. The Hollydale aquifer is the uppermost regional aquifer in the Pleistocene San Pedro Formation. Bulletin 104 indicates that this aquifer averages approximately 30-feet in thickness in this area, with its top at a depth of about 70 feet bg. The major water producing aquifers in the region are the Lynwood aquifer located approximately 200-feet bg, the Silverado aquifer located at approximately 275-feet bg, and the Sunnyside aquifer located at approximately 600-feet bg.

4.0) SITE GEOLOGY/HYDROGEOLOGY

SCS identified silty clays with some minor amounts of silt and sand in the shallow subsurface from surface grade to approximately 15' bg. Below the silty clay, poorly sorted coarse-grained sand and gravel from 15' bg to 26' bg. SCS referenced a less permeable silty clay layer between 35' and 50' bg, which contained stringers of fine sand and silt that is part of the Gaspur/Hollydale aquifer.

A perched aquifer was encountered at approximately 23' bg by SCS and referenced as such by SCS. Based on a review of McKesson files, Harding Lawson Associates (HLA) stated that in January 1975 prior to McKesson operating their neighboring facility, no groundwater was encountered to a depth of 45' bg beneath the McKesson property. In March 1986, during operation of the neighboring McKesson facility, groundwater was encountered at 22' bg beneath the McKesson property as stated by HLA. Based on the HLA statements, BEII concludes with SCS that the first encountered groundwater is part of a shallow perched aquifer. The sediments within this perched aquifer appear to be consistent with the Gasper Aquifer. Monitoring wells MW-4, MW-6, MW-8, MW-9, MW-10, MW-11, MW-12, MW-16, MW-18, MW-19, MW-22, and MW-26 will be noted as Gasper monitoring wells with groundwater at approximately 32' bg. The water identified in monitoring well MW-4 at 26.41' bg is more than likely residual groundwater contained in the well sump and will not be incorporated in the gradient.

SCS also referenced that the Gaspur/Hollydale Aquifer was encountered at 20' to 35' bg beneath the site. Further review of Bulletin 104 by BEII and DTSC, identified that the SCS referenced Gaspur/Hollydale Aquifer was in fact the Gage/Hollydale Aquifer. Monitoring wells MW-13, MW-14, MW-15, MW-17, MW-20, MW-21, MW-23, MW-24, and MW-25 will be noted as Gage/Hollydale monitoring wells since they are screened in that deeper groundwater which is now at approximately 40' bg.

The groundwater gradient flowed historically to the southwest as identified by SCS. In December 2003, the shallow groundwater was identified at depths between 33.71' bg to 42.73' bg beneath the site. The potentiometric groundwater flow direction of this shallow zone (Gasper Aquifer) is away from the high point (MW-10) with a hydraulic gradient of 0.04 ft/ft to the north and 0.02 to 0.13 ft/ft to the south (See Figure 3). Groundwater in the deeper Gage/Hollydale was identified at depths between 42.65' bg to 47.35' bg beneath the site. The potentiometric groundwater flow in the Gage/Hollydale Aquifer is to the west-southwest direction with a hydraulic gradient of 0.009 ft/ft (See Figure 4).

5.0) GROUNDWATER MONITORING PROTOCOL

The purpose of the proposed groundwater monitoring was to provide data regarding the piezometric surface, water quality, and the presence of free product (FP), if any on a quarterly basis to the DTSC. Groundwater monitoring consisted of such

activities as water level measurement, well sounding for detection of FP, collection of groundwater samples, field analysis, laboratory analysis, and reporting. The proposed work was performed as follows:

The depth to groundwater was measured in each well using a decontaminated water level indicator capable of measuring to with 1/100th of a foot. Prior to and following collection of measurements from each well, the portions of the water level indicator entering groundwater were decontaminated using a 3-stage decontamination procedure consisting of a potable wash with water containing Liquinox soap followed by a double purified water rinse. The depth to water was measured in all monitoring wells before any wells were purged. Wells were measured in the order of least contaminated to the most contaminated based on past analysis. For the ACC wells, the following order of wells was followed: MW-23, MW-24, MW-25, MW-17, MW-20, MW-15, MW-14, MW-12, MW-13, MW-21, MW-9, MW-16, MW-22, MW-18, MW-11, MW-26, MW-10, MW-8, MW-6, MW-19, and MW-4.

The well box and casing were opened carefully to preclude debris or dirt from falling into the open casing. Once the well cap was removed, the water level indicator was lowered into the well until a consistent tone was registered. Several soundings were repeated to verify the measured depth to groundwater. The depth of groundwater was measured from a reference point marked on the lip of each well casing. A licensed surveyor has surveyed the elevation of each reference point. The result was recorded on the field sampling log for each well. Other relevant information such as physical condition of the well, presence of hydrocarbon odors, etc. was also recorded as appropriate on the field sampling log.

The well sounder used for this project was equipped to measure free product (FP) layers thicker than 0.1 inches. FP was indicated as light non-aqueous phase liquid (LNAPL) or dense non-aqueous phase liquid (DNAPL).

Groundwater purging was conducted immediately following the collection of a groundwater depth measurement from all monitoring wells. Groundwater samples were analyzed for the following constituents (new wells for TPH-gas and VOCs only):

- Volatile organic compounds (VOCs) using EPA Method 8260B to include all Tentatively Identified Compounds (TICs).
- Total Petroleum Hydrocarbons as gasoline (TPH-gas) using EPA Method 8015 modified.
- Total dissolved solids (TDS) using EPA Method 160.1.
- Nitrates, chloride, sulfate, sulfide, ferrous iron, and manganese using EPA Methods 352.1, 325.3, 375.4, 376.1, 7380, and 7460, respectively.
- Alkalinity, carbonates, and bicarbonates using EPA Methods 310.1 and Standard Method 4500.
- Total organic carbon (TOC) and dissolved organic carbon (DOC) using EPA Method 415.1.

5.1) Well Purging and Measurement of Field Parameters

Wells were purged in the above mentioned order (see Section 5.0) to minimize the potential for cross contamination. The wells were purged by Blaine Tech Services, Inc (Blaine) and sampled by BEII from December 9 through 11, 2003 in the presence of Mr. Sanford Britt of the DTSC. Diffusion bags were removed on December 15, 2003. The purge protocol was presented in the Field Sampling Plan as Appendix A in the Groundwater Monitoring Work Plan dated October 23, 2001 and submitted to the DTSC.

Prior to purging, casing volumes was calculated based on total well depth, standing water level, and casing diameter. One casing volume was calculated as:

$$V = \pi (d/2)^2 h \times 7.48$$

where:

V is the volume of one well casing of water (in gallons, $1 \text{ ft}^3 = 7.48 \text{ gallon}$);

d is the inner diameter of the well casing (in feet); and h is the total depth of water in the well - the depth to water level (in feet).

A minimum of three casing volumes of water was purged from each well. Water was collected into a measured bucket to record the purge volume. All purged groundwater was containerized in 55-gallon hazardous waste drum for disposal at a later date.

After each well casing volume was purged; water temperature, pH, specific conductance (EC), and turbidity were measured using field test meters and the measurements were recorded on Well Monitoring Data Sheets (See Appendix A). Samples were collected after these parameters have stabilized; indicating that representative formation water has entered the well. The temperature, pH, and specific conductance should not vary by more than 10 percent from reading to reading. Turbidity should be less then 5 NTUs, however, the purging process stirred up silty material in each well which made the turbidity measurements of 5 NTUs unattainable. Groundwater samples were collected after water levels recharged to 80 percent of the static water column. Notations of water quality including color, clarity, odors, sediment, etc. were also noted in the data sheets.

All field meters were calibrated according to manufacturers' guidelines and specifications before and after each day of field use. Field meter probes were decontaminated before and after use at each well. The pH, conductivity, and temperature were measured with a Myron-L Ultra Meter and turbidity was measured with a HF Scientific DRT-15C meter. The calibration standards used

for pH were 4 and 7 with expiration dates of February 2004. Conductivity was calibrated to a 3900 µs standard with an expiration date of February 2004. A 0.02 NTU standard was used to calibrate the turbidity with an expiration date of February 2004.

5.2) Well Sampling

Groundwater samples were collected by lowering a separate disposable bailer into each well. Groundwater was transferred from the bailer directly into the appropriate sample containers with preservative, if required, chilled, and processed for shipment to the laboratory. When transferring samples, care was taken not to touch the bailer-emptying device to the sample containers. Diffusion bags were used to collect water samples from MW-23, MW-24, and MW-25 at 1.5-feet and 7.5-feet below measured groundwater. Water samples were transported to Southland Technical Services, Inc., a certified laboratory by the California Department of Health Services (Cert. #1986) to perform the requested analysis.

Groundwater samples were collected from monitoring wells MW-23, MW-24, MW-25, MW-14, MW-17, MW-20, MW-15, MW-21, MW-13, MW-12, MW-9, MW-16, MW-26, MW-18, MW-11, MW-10 only. Monitoring wells MW-4, MW-6, MW-8, MW-16, and MW-19 identified FP as LNAPL at a thickness of 0.04', 0.08', 0.66', 0.77' and 4.65', respectively. The FP thickness in MW-6 is assumed based on the depth of the well bottom since no water was identified in the well.

Vials for VOC and TPH analysis were filled first to minimize aeration of groundwater collected in the bailer. The laboratory provided vials containing sufficient HCl preservative to lower the pH to less than 2. The vials were filled directly from the bottom-emptying device. The vial was capped with a cap containing a Teflon septum. Blind duplicate samples for the laboratory were labeled as "MW-1" and "MW-2" and were collected from monitoring wells MW-14 and MW-21, respectively. All vials were inverted and tapped to check for bubbles to insure zero headspace.

New nitrile gloves were worn during by sampling personnel for each well to prevent cross contamination of the samples. A solvent free label was affixed to each sample container/vial denoting the well identification, date and time of sampling, and an identifying code to distinguish each individual bottle.

5.3) Sample Handling

VOA vials, including laboratory trip blanks, were placed inside of one new Ziplock bag per well and stored in a cooler chilled to approximately 4°C with bagged ice. Water samples were logged on the chain-of-custody forms

immediately following sampling of each well to insure proper tracking through analysis to the laboratory.

5.4) Waste Management

FP, purged groundwater, and decontamination water were stored in sealed 55-gallon drums for a period not to exceed 90 days. Stored wastes will be profiled for hazardous constituents and characterized as Non-Hazardous, California Hazardous, or RCRA Hazardous, as appropriate. Any transportation of waste will be under appropriate manifest.

6.0) FREE PRODUCT

Monitoring wells MW-4, MW-6, MW-8, MW-16, and MW-19 identified FP as LNAPL at a thickness of 0.04-feet, 0.08-feet, 0.66-feet, 0.77-feet, and 4.65-feet, respectively. A total of 2.75 gallons of FP was recovered from MW-4 and MW-6, 12 gallons of FP was recovered from MW-8, 0.5 gallons was recovered from MW-16, and 2 gallons of FP was recovered from MW-19 to date.

Laboratory analysis of the FP was performed in June 2002 and identified dissolved TPH-gas at 812,000 mg/L from MW-6 and 801,000 mg/L from MW-8. Concentrations of dissolved TPH as diesel were also identified in FP as 53,400 mg/L from MW-6 and 56,600 mg/L from MW-8. No detectable concentrations of TPH as motor oil were identified in FP collected from both wells. Previous laboratory analysis of FP collected from monitoring well MW-6 identified 1,1,1-TCA at 28,100 mg/L, 1,2,4-Trimethylbenzene at 22,100 mg/L, Xylenes at 10,370 mg/L, Toluene at 9,010 mg/L, 1,3,5-Trimethylbenzene at 5,400 mg/L, and Ethylbenzene at 4,320 mg/L.

FP from MW-16 and MW-19 was collected and analyzed this quarter for TPH using EPA method 8015. Monitoring well MW-16 contained FP in the gasoline range (C_4-C_{12}) as 455,000 mg/L and FP in the diesel range $(C_{13}-C_{23})$ as 101,000 mg/L. Monitoring well MW-19 contained FP in the gasoline range (C_4-C_{12}) as 425,000 mg/L and FP in the diesel range $(C_{13}-C_{23})$ as 58,700 mg/L.

7.0) GROUNDWATER SAMPLE RESULTS

Groundwater samples collected from the shallow zone (Gasper) monitoring wells MW-9, MW-10, MW-11, MW-12, MW-16, and MW-18 in December 2003 contained TPH-gas ranging from 77,200 µg/L in MW-10 to 1,280 µg/L in MW-9. Monitoring wells MW-22 and MW-26 contained an insufficient volume of water to retrieve a sample. Laboratory results are included as Appendix B. Dissolved TPH-gas concentrations averaged 35,194 µg/L in the shallow Gasper Aquifer, an increase from the 29,706 µg/L average identified in September 2003. The largest increase in TPH-gas was identified in MW-11 from 30,200 µg/L (September 2003) to 51,500 µg/L (December 2003). See Table 1 and Figure 5 for dissolved TPH-gas concentrations.

Groundwater samples collected from the deeper zone (Gage/Hollydale) monitoring wells MW-13, MW-14, MW-15, MW-17, MW-20, MW-21, MW-23, MW-24, and MW-25 in December 2003 contained TPH-gas ranging from 2,140 µg/L in MW-21 to non-detect (<50 µg/L) in MW-17. The concentrations of dissolved TPH-gas averaged 774 µg/L in the deeper Gage/Hollydale Aquifer, an increase from the 185 µg/L average identified in September 2003. The increase in average TPH-gas was the exclusion of MW-23, MW-24, and MW-25 from TPH-gas analysis, which previously were non-detect and included in the average. See Table 1 and Figure 6 for dissolved TPH-gas concentrations.

Concentrations of dissolved BTEX ranged between 19,632 μ g/L in MW-10 to <5.1 μ g/L in MW-12 from the shallow Gasper Aquifer (See Figure 5 and Table 2). The less than value includes those concentrations reported as Practical Quantitation Limit (PQL), which is defined as the method detection limit multiplied by the dilution factor (See Appendix B for laboratory results). The average dissolved BTEX concentration in the Gasper from the 2003 fourth quarter sampling was <7,307 μ g/L, a decrease from <7,860 μ g/L from the previous sampling episode.

Dissolved BTEX in the deeper Gage/Hollydale Aquifer ranged between <157.9 μ g/L in MW-21 to <4 μ g/L in MW-13, MW-14, MW-17, MW-23, MW-24, and MW-25 (See Figure 6 and Table 2). The 2003 fourth quarter sample episode identified an average dissolved BTEX concentration of <26.9 μ g/L in the Gage /Hollydale, a slight increase from <23 μ g/L the previous sampling episode.

Groundwater sample results from the shallow Gasper Aquifer identified relatively high VOC concentrations compared to the low VOC concentrations in the deeper Gage/Hollydale Aquifer (See Table 2 and Appendix B for laboratory results).

Concentrations of dissolved PCE were identified at a maximum concentration of <400 µg/L from MW-10 and MW-11 in the shallow Gasper zone. Dissolved TCE was identified at a maximum of 169 µg/L from MW-18 in the Gasper (See Figure 7). The average dissolved PCE and TCE concentrations for the fourth quarter 2003 were <202 µg/L and <195 µg/L, respectively. Maximum concentrations of dissolved PCE and TCE in the Gage/Hollydale were detected as 133 µg/L and 140 µg/L, respectively in groundwater collected from MW-21 (See Figure 8). The fourth quarter average PCE and TCE dissolved concentrations in the deeper Gage/Hollydale zone were <43 µg/L and <37 µg/L, respectively.

Dissolved concentrations of 1,1,1-TCA were identified in the shallow Gasper Aquifer at a maximum of 7,460 μ g/L in MW-10 (See Figure 7). Monitoring well MW-18 located downgradient of MW-10 identified dissolved 1,1,1-TCA as 420 μ g/L. The average dissolved 1,1,1-TCA concentration in the Gasper Aquifer was identified as <1,891 μ g/L this quarter, an increase from <978 μ g/L identified the previous quarter. The increase in average 1,1,1-TCA was the exclusion of MW-16 and MW-26 (no data),

which previously were included in the average. Lower concentrations of dissolved 1,1,1-TCA were detected in the deeper Gage/Hollydale Aquifer at a maximum of 132 μ g/L in MW-21 (See Figure 8). Dissolved 1,1,1-TCA was also identified in MW-20 at 81.7 μ g/L. No significant concentrations of 1,1,1-TCA (above 5 μ g/L) were detected in all other Gage/Hollydale Aquifer monitoring wells.

Groundwater samples were also analyzed for 1,4-Dioxane, a preservative used in 1,1,1-TCA to prolong its shelf life. However, 1,4-Dioxane is more miscible in groundwater than 1,1,1-TCA and will often lead the dissolved 1,1,1-TCA plume. Gasper monitoring wells MW-10, MW-11, and MW-18 identified dissolved 1,4-Dioxane concentrations between <10,000 μ g/L and <1,250 μ g/L due to high dilution factors. Gage/Hollydale monitoring wells MW-13, MW-14, MW-15, MW-17, MW-21, MW-23, MW-24, and MW-25 identified dissolved 1,4-Dioxane concentrations between <1,000 μ g/L and <100 μ g/L due to dilution factors.

Concentrations of dissolved chlorinated VOC daughter products were relatively elevated compared to their respective parent VOCs identified above and also showed a trend of higher dissolved concentrations in the shallow Gasper Aquifer compared to the deeper Gage/Hollydale Aquifer.

1,1-DCA is a daughter product from reductive dehalogenation of 1,1,1-TCA and from carbon-carbon double bond reduction of 1,1-DCE, another daughter product. Dissolved 1,1-DCA concentrations were identified between 50 μ g/L and 53,500 μ g/L in the Gasper Aquifer (See Figure 7). The greatest dissolved 1,1-DCA concentration was observed in MW-10. The average dissolved 1,1-DCA concentration in the shallow Gasper zone was identified as 21,785 μ g/L this quarter, an increase since the previous quarter average of 15,145 μ g/L. Dissolved 1,1-DCA concentrations in the Gage/Hollydale Aquifer ranged between <2 μ g/L and 2,300 μ g/L (See Figure 8). Monitoring well MW-21 located along the southwest property boundary contained the highest dissolved 1,1-DCA concentrations in the Gage/Hollydale Aquifer as 2,300 μ g/L. The second highest dissolved 1,1-DCA concentration identified from MW-15 was only 262 μ g/L. The average dissolved 1,1-DCA concentration in the Gage/Hollydale Aquifer this quarter was <324 μ g/L, an increase from the third quarter average (<178 μ g/L).

Dissolved 1,1-DCE, a daughter product of the dehydrohalogenation of 1,1,1-TCA and reductive dehalogenation of TCE, was identified at concentrations ranging from 7.3 μ g/L to 4,170 μ g/L in the shallow Gasper zone (See Figure 7). The maximum dissolved 1,1-DCE concentration was observed in MW-18. The next largest dissolved 1,1-DCE concentration was identified as 2,750 μ g/L in groundwater collected from MW-10. The average dissolved 1,1-DCE concentration in the Gasper Aquifer this quarter was 1,756 μ g/L, a decrease from the previous average of 2,396 μ g/L in September 2003. Dissolved 1,1-DCE concentrations in the Gage/Hollydale Aquifer ranged between <2 μ g/L and 1,960 μ g/L (See Figure 8). Gage/Hollydale monitoring well MW-21 located along the southwest property boundary contained the maximum dissolved 1,1-DCE concentration

(1,960 µg/L). The average dissolved 1,1-DCE concentration in the Gage/Hollydale Aquifer this quarter was <328 µg/L.

Cis-1,2 DCE is also a daughter product of the dehydrohalogenation of 1,1,1-TCA and reductive dehalogenation of TCE. Concentrations of dissolved cis-1,2-DCE were identified between 8 μg/L and 15,900 μg/L in the Gasper Aquifer (See Figure 7). The greatest dissolved cis-1,2-DCE concentration was observed in MW-18. The average dissolved cis-1,2-DCE concentration in the Gasper Aquifer this quarter was <6,711 μg/L, an increase from the third quarter average of <5,132 μg/L. Dissolved cis-1,2-DCE concentrations in the Gage/Hollydale Aquifer ranged between <2 μg/L and up to a maximum of 4,400 μg/L identified from MW-21 (See Figure 8). Gage/Hollydale monitoring well MW-15 contained the second largest dissolved 1,1-DCE concentration of 1,570 μg/L. The average dissolved cis-1,2-DCE concentration in the Gage/Hollydale Aquifer this quarter was <682 μg/L, an increase from the previous quarterly average of <331 μg/L.

Vinyl chloride (VC) is a by-product from the dehydrohalogenation and reductive dehalogenation of the chlorinated VOC daughter products mentioned above. Similar to the other VOCs, concentrations of dissolved VC were at lower concentrations in the deeper Gage/Hollydale than in the shallow Gasper zone. Dissolved VC concentrations were identified between 5.2 μ g/L and 3,700 μ g/L in the shallow Gasper zone (See Figure 7). Monitoring well MW-10 contained the largest dissolved VC concentration in the Gasper. However, dissolved VC concentrations in the Gage/Hollydale ranged from <2 μ g/L to 134 μ g/L (See Figure 8). The maximum dissolved VC concentration was located along the southwest property line in monitoring well MW-15.

Maximum dissolved concentrations of acetone and MEK were identified in Gasper monitoring well MW-18 as 32,400 μ g/L and 23,700 μ g/L, respectively (See Figure 9). Groundwater collected from MW-10 also identified elevated concentrations of dissolved acetone as 19,200 μ g/L and dissolved MEK as 4,080 μ g/L. Average concentrations of dissolved acetone and MEK in the Gasper Aquifer this quarter were 21,262 μ g/L and 15,252 μ g/L, respectively. No detectable concentrations of acetone or MEK were identified above method detection limit from the 2003 fourth quarter groundwater monitoring episode in the Gage/Hollydale Aquifers (See Figure 10). However, the detection limits were <100 μ g/L in some samples due to dilution factors.

Dissolved methylene chloride concentrations were identified below 400 μ g/L in MW-10 and MW-11 from the shallow Gasper zone (See Figure 9). Methylene chloride was <40 μ g/L in MW-21 and <5 in the remaining Gage/Hollydale Aquifer monitoring wells sampled (See Figure 10). No detectable concentrations of dissolved methylene chloride were identified. The detection limits for dissolved methylene chloride were high in some samples (<400 μ g/L) due to the high dilution factors.

Most groundwater samples were also analyzed for biodegradation indicators (See Table 3 for laboratory results). Further comparative data needs to be acquired prior to evaluating biodegradation processes. Subsequent groundwater analysis will include these biodegradation indicators.

8.0) CONCLUSIONS

Based on the recent groundwater sample results, BEII concludes that the site is impacted by dissolved VOCs in both the Gasper and Gage/Hollydale Aquifers. Dissolved VOC concentrations, however, were detected at higher concentrations in the shallow Gasper zone compared to the Gage/Hollydale Aquifer. Monitoring wells Gasper monitoring wells located next to MW-10, MW-11, and MW-18 contained elevated dissolved VOC concentrations. Gage/Hollydale monitoring wells located along the southern property boundary contained the maximum dissolved VOC concentrations in that aquifer.

BEII also concludes that the recent groundwater sampling data provides preliminary support that the site has potential for intrinsic biodegradation. Dissolved parent VOC (PCE and TCE) concentrations were identified at concentrations < 800 µg/L. 1,1,1-TCA was the only parent VOC that was identified at greater than 4,500 µg/L exclusively in MW-10. Daughter VOC constituents such as 1,1-DCA, 1,1-DCE, cis-1,2-DCE, and VC identified dissolved concentrations of up to 53,500 µg/L. The low parent VOC concentration to high daughter VOC concentration ratio is a preliminary indicator of intrinsic biodegradation. However, further groundwater monitoring is needed to determine whether intrinsic biodegradation is occurring.

9.0) RECOMMENDATIONS

BEII recommends that quarterly groundwater monitoring for VOCs and TPH-gas be continued at the former ACC property. BEII further recommends that free product removal be performed on a monthly basis to reduce its mass.

Figures

Blakely Environmental	Site Location Map	FIGURE
Investigations, Inc. 4359 Phelan Road	Former Angeles Chemical Company	1
Phelan, CA 92371	8915 Sorensen Ave., Santa Fe Springs, CA 90670	·

Tables

wented interval (90) W 34396 34396 37186 37280 37397 37497 37490 37797 37690 37791 37794 37794 37794 37794 37794 37697 37690 37791 37794 37697 37690 37791 37794 37697 37690 37791 37794 37697 37690 37791 37793 37690 37791 37793 37690 37791 37793 37690 37791 37793 37690 37791 37793 37690 37791 37793 37690 37791 37793	**************************************	W-1 "MW 100" 30"-3 10"-3	3 1000-50 0 20-40 0 20-40 0 30-40 1 30-10 1 30-10 1 30-10 1 44-50 1 44-50 1 44-50 1 50-50 1 50	20.46 20.46 20.46 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47	MW-8 207-307 34,807 36,322 NA 26,887 80,327 NA 30,287 77 only FP only	7694-7 34-58 26.59 28.79 28.70 NA 28.21 30.07 34.31 34.35 33.46 NA	30.61 30.640.2 30.61 32.66 33.65 33.65 33.65 33.65	30.5-46.5 30.5-46.5 34.767 34.767 33.227 31.107 34.397 35.667	22.65° 25.44° 30.41° 31.66° 33.71° 29.71 4430 4678	30-40 82/71' 35/AP 50,15' 51.84' 83.73'	\$3,30° \$1,00° \$1,00° \$9,28° \$4,3°	41,689 41,689 34,77 37,889 42,187 45,127 137,4 1802 1832	43,00° 40,96° 39,20° 48,76° 46,73° 1,866 1913	45.63° 41.88° 59.62° 40.64° 1821 1818	33.67 52.07 29.68 43.48 46.89 2106 2511	40.44 38.26 36.44 40.65 43.47 1685 1882	38.06 35.36 35.37 42.77 2515 2645	30.45 33.35 33.47 33.29 34.65 6677 5912	41.11 34.69 37.69 41.87 44.83	42.54° 40.36° 34.50° 42.06° 45.44°	35.80′ 39.87′ Dry	71'-81' 34.22' 39.55' 42.65'	27.73 42.66 46.60	71'-61' 38,22' 44,35'	307-41 36,7 36,45 54,6
Cale sened interval (50) W 34386 37486 37286 37387 37487 37487 37680 37761 37784 37764	**************************************	M-1 *M/M** 50 30*-3 50*-34** 57.34** 5	3 1000-50 0 20-40 0 20-40 0 30,10 1 30,10 1 30,10 1 30,10 1 30,10 1 30,10 1 44,50 1 44	20.46 20.46 20.46 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47	MW-6 201-307 SS. 85 SS. 92 NA 28.657 SO. 327 NA 90.257 PF only NA NA	7884-58 34-58 25.19 25.19 20.17 20.07 34.07 34.07 34.07 80.44 MA NA 2710 2710 2780 2882 NA	30.61 30.61 30.61 30.61 30.65 30.65 30.65 30.65 30.65 30.65	30.57-45.0 30.57-45.0 30.57-45.0 34.70 34.70 34.27 31.10 35.60 281 282 283 2840 2840	22.65° 25.44° 30.41° 31.66° 33.71° 29.71 4430 4678	30-47 82,71' 52,48' 90,15' 91,84' 83,78' 2565 3764 3248	33,36° 33,07° 31,07° 39,28° 34,3° 1872 1492	41,689 41,689 34,77 37,889 42,187 45,127 137,4 1802 1832	43,00° 40,96° 39,20° 48,76° 46,73° 1,866 1913	45.63° 41.88° 59.62° 40.64° 1821 1818	33.67 32.67 32.67 32.67 34.68 36.63 2106 2511	40.44 38.26 36.44 40.65 43.47 1685 1882	38.06 35.36 35.37 42.77 2515 2645	30.45 33.35 33.47 33.29 34.65 6677 5912	\$7-67 41.11 36.69 37.69 41.87 44.83	42.54° 40.36° 34.50° 42.06° 45.44°	35.80′ 39.87′ Dry	71'-81' 34.22' 39.55' 42.65'	27.73 42.66 46.60	71'-81' 39,22' 44,35' 47,35'	30,4 36,7 36,4
wented interval (90) W 34396 34396 37186 37280 37397 37497 37490 37797 37690 37791 37794 37794 37794 37794 37794 37697 37690 37791 37794 37697 37690 37791 37794 37697 37690 37791 37794 37697 37690 37791 37793 37690 37791 37793 37690 37791 37793 37690 37791 37793 37690 37791 37793 37690 37791 37793 37690 37791 37793	30.06 35.83 37.43 42.44 NA NA NA NA NA NA NA	-60' 30'-5 -60' 3	0 20-45 0 29-45 0 35,42 1 25,15 1 25,15 1 35,42 1 25,15 1 35,16 2 35,16 2 35,16 2 44,56 2 44,56 1 44,5	17-27 22.36 36.39 36.39 36.49 36.49 36.49 36.30 36.30	207-307 35.85 35.32 NA 20.85 NA 30.28 PP Only PP only PP only PP only PP Only PA Only PP Only PA Only PP Only PA	34-58 24.59 25.19 26.70 MA 28.20 30.07 34.11 34.03 33.18 50.44 MA 2710 2710 2782 2882 NA	30.61 32.66 33.65 33.65 33.65 33.65 33.54 34.39 NA NA	30.84 30.84 34.70 34.70 34.24 33.22 31.10 34.24 35.06 2331 2438 2448 2448	32.63° 32.63° 32.44° \$1.66° 35.71° 2671 4382 4430 3678	30-47 82,71' 52,48' 90,15' 91,84' 83,78' 2565 3764 3248	33,36° 33,07° 31,07° 39,28° 34,3° 1872 1492	41,689 41,689 34,77 37,889 42,187 45,127 137,4 1802 1832	43,00° 40,96° 39,20° 48,76° 46,73° 1,866 1913	45.63° 41.88° 59.62° 40.64° 1821 1818	33.67 32.67 32.67 32.67 34.68 36.63 2106 2511	40.44 38.26 36.44 40.65 43.47 1685 1882	38.06 35.36 35.37 42.77 2515 2645	30.45 33.35 33.47 33.29 34.65 6677 5912	\$7-67 41.11 36.69 37.69 41.87 44.83	42.54° 40.36° 34.50° 42.06° 45.44°	35.80′ 39.87′ Dry	71'-81' 34.22' 39.55' 42.65'	27.73 42.66 46.60	71'-81' 39,22' 44,35' 47,35'	30,4 36,7 36,4
W 34386 36491 37166 37215 37362 37362 37434 37436 37600 37761 37600 37761 37600 37761 37600 37761 37600 37761 37600 37761 37670 37600 37761 37670 37600 37761 37670 37600 37761 37670 37600 37761 37670 37600 37761 37600 37761 37600 37761 37600 37761 37600 37761 37600 37761 37600 37761 37600 37761 37600 37761 37600 37761	30.00 38.85 37.41 84.2 37.24 37.24 NA NA NA NA NA NA NA	DB* 28.8; 38.2; 41° 37.9 U. HA. 11° 37.9 U. HA. 12° 38.7 U. HA. 12° 38.7 U. HA. 12° 38.7 U. HA. 12° 38.7 U. HA. 12° 38.0 U. HA	77 29,70 7 39,43 7 35,43 7 35,43 7 30,13 8 30,13 8 44,56 9 44,33 9 44,33 9 50,68 1 1974 3 1981 1 1981	23.25 (A.37) (A.	24.85 28.82 NA 28.88 NA 20.28 PF only PF only PF only PF only NA NA NA NA	24.58* 28.70* NA 28.21* 30.07* 34.31* 33.18* 30.44* MA MA 2710 2788 2882 NA	30,91 32,96 32,96 32,81 30,62 32,81 33,53 34,53 NA NA	30.687 34.707 34.677 33.227 31.107 34.387 35.667 2381 2225 2400 2440	32.63° 32.63° 32.44° \$1.66° 35.71° 2671 4382 4430 3678	30-47 82,71' 52,48' 90,15' 91,84' 83,78' 2565 3764 3248	33,36° 33,07° 31,07° 39,28° 34,3° 1872 1492	41,689 41,689 34,77 37,889 42,187 45,127 137,4 1802 1832	43,00° 40,96° 39,20° 48,76° 46,73° 1,866 1913	45.63° 41.88° 59.62° 40.64° 1821 1818	33.67 32.67 32.67 32.67 34.68 36.63 2106 2511	40.44 38.26 36.44 40.65 43.47 1685 1882	38.06 35.36 35.37 42.77 2515 2645	30.45 33.35 33.47 33.29 34.65 6677 5912	\$7-67 41.11 36.69 37.69 41.87 44.83	42.54° 40.36° 34.50° 42.06° 45.44°	35.80′ 39.87′ Dry	71'-81' 34.22' 39.55' 42.65'	27.73 42.66 46.60	71'-81' 39,22' 44,35' 47,35'	30,-4 36,- 38,-
36491 37186 37218 37322 37421 37421 37421 37421 37421 37421 3764 mtuctivity 37607 37610 37761 37613	35.85 37.41 10.4 37.85 42.44 NA NA NA NA NA NA NA NA NA NA NA NA NA	BZ 36.2 .41 37.9 .41 37.9 .62 38.7 .62 38.7 .63 48.0 .64 48.	7 36,43 1 30,16 1 57,36 5 30,18 7 44,56 7 44,35 1 50,68 1 1974 1 1961 1 NA	28.47 28.47 28.47 28.47 28.47 28.47 28.47 38 38 38 38 38 38 38 38 38 38 38 38 38	NA SOUND PROMY PRO	24.58* 28.70* NA 28.21* 30.07* 34.31* 33.18* 30.44* MA MA 2710 2788 2882 NA	30,91 32,96 32,96 32,81 30,62 32,81 33,53 34,53 NA NA	30.687 34.707 34.677 33.227 31.107 34.387 35.667 2381 2225 2400 2440	32.63° 32.44° 31.66° 31.66° 31.71° 4582 4430 3678	82,71° 32,48° 90,15° 91,84° 83,78° 2788 3768	\$3,36° \$3,07° \$1,08° \$3,28° \$4,3° \$4,3° \$1472 \$1462 \$1192	41,689 39,77 37,889 42,187 45,137 137,4 1802 4832	45.06° 46.56° 30.20° 43.76° 46.73° 1866 1913	45.63° 41.88° 39.82° 40.64° 18.21 1818	33.67 52.07 29.68 43.48 46.89 2106 2511	40.44' 38.26' 36.44' 40.65' 43.47' 1685 1882	38.06' 35.36' 33.13' 34.37' 42.73' 2618 3645'	\$3.55° \$3.42° \$3.30° \$3.20° \$4.68° \$4.77° \$4.2	41.11° 34.69° 37.09° 41.87° 44.83°	42.34° 40.36° 34.36° 45.44°	35.80° 39.87° Dry	34.23° 39.56° 42.86°	37.73 42,69' 45,69'	89.27 44.35 47.35	38. 28.
36491 37186 37218 37322 37421 37421 37421 37421 37421 37421 3764 mtuctivity 37607 37610 37761 37613	35.85 37.41 10.4 37.85 42.44 NA NA NA NA NA NA NA NA NA NA NA NA NA	BZ 36.2 .41 37.9 .41 37.9 .62 38.7 .62 38.7 .63 48.0 .64 48.	7 36,43 1 30,16 1 57,36 5 30,18 7 44,56 7 44,35 1 50,68 1 1974 1 1961 1 NA	28.47 28.47 28.47 28.47 28.47 28.47 28.47 38 38 38 38 38 38 38 38 38 38 38 38 38	NA SOUND PROMY PRO	28.19 28.70 MA 28.21 30.07 34.07 34.07 33.18 50.44 MA NA 2710 2788 2862 NA	30.81 32.66 32.61 32.81 30.85 33.85 34.59 NA NA	24.70 34.67 33.22 31,10 34,34 35.66 2331 2235 2406	22.68' 32.44' 30.41' 31.66' 33.71' 2071 4382 4430 3076	\$2,48° \$0,13° \$1,84° \$3,78° \$3,78° \$768 \$246	31.06° 39.26° 34,3° 1872 1492 1192	\$9.77 37.88 42.18 45.12 137.4 1802 1832	40.96 39.297 43.76 46.72 1866 1913	41.88 59.62 44.18 40.64 1821 1816	\$2.01° 29.66° \$3.48° \$6.83° 2106	38.28 36,41 40.65 43.47 1885 1882	35.36 33.13 34.37 42.73 2515 2545	38,47 38,30 33,29 34,66 6677 5912	34,09 37.09 41.87 44.88	40.36° 34.40° 42.66° 45.44°	39.87° Dry	39,56 42,85	42,60° 45,60°	44,35 47,35	35.
37-165 372-15 373-25 37	87, 41 10.2 37, 85 42, 44 NA NA NA NA NA NA NA NA NA NA	411 37.9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	17 30,18 10 47,36 17 47,36 17 44,36 17 44,35 17 41,35 18 19,98 19 19,4 19 19 19,4 19 19 19,4 19 19 19,4 19 19 19 19 19 19 19 19 19 19 19 19 19 1	28.44* 28.44* 28.44* 28.44* 28.44* 28.44* 28.44* 28.44* 28.44* 28.44* 28.44* 28.44*	NA 28.88° S0.32° S0.32° P Only PP only PP only PP only PP only PP only A NA NA NA	28.70* MA 28.21* 30.07 34.11* 34.03* \$3.18* \$0.44* MA MA 2710 2708 2882 NA	30.61 32.65 32.65 32.81 30.65 32.34 34.55 NA NA	24.70 34.67 33.22 31,10 34,34 35.66 2331 2235 2406	22.68' 32.44' 30.41' 31.66' 33.71' 2071 4382 4430 3076	\$2,48° \$0,13° \$1,84° \$3,78° \$3,78° \$768 \$246	31.06° 39.26° 34,3° 1872 1492 1192	\$9.77 37.88 42.18 45.12 137.4 1802 1832	40.96 39.297 43.76 46.72 1866 1913	41.88 59.62 44.18 40.64 1821 1816	\$2.01° 29.66° \$3.48° \$6.83° 2106	38.28 36,41 40.65 43.47 1885 1882	35.36 33.13 34.37 42.73 2515 2545	38,47 38,30 33,29 34,66 6677 5912	34,09 37.09 41.87 44.88	40.36° 34.40° 42.66° 45.44°	39.87° Dry	39,56 42,85	42,60° 45,60°	44,35 47,35	35.
37215 37362 37421 37436 37590 37791	84.2 37.8 42.4 24.4 24.4 24.4 24.4 24.4 24.4 24	M. HA. 3.27 395.8 8.27 395.7 1.43.9 1	NA 9 57,50 7 30,19 8 44,50 9 44,33 1 41,33 1 10,53 1 1	28.40 28.40 28.40 28.40 28.30 28.30 28.41 28.30 NA NA NA	28.88° SU.32° NA 30.28° FP only FP only FP only AA NA NA	MA 28.21' 30.07 34.11' 34.03' \$3.14' \$0.44' MA MA 2710 2788 2882 NA	30,61 32,66 33,65 33,65 30,66 32,34 34,53 NA NA	24.70 34.67 33.22 31,10 34,34 35.66 2331 2235 2406	22.68' 32.44' 30.41' 31.66' 33.71' 2071 4382 4430 3076	\$2,48° \$0,13° \$1,84° \$3,78° \$3,78° \$768 \$246	31.06° 39.26° 34,3° 1872 1492 1192	\$9.77 37.88 42.18 45.12 137.4 1802 1832	40.96 39.297 43.76 46.72 1866 1913	41.88 59.62 44.18 40.64 1821 1816	\$2.01° 29.66° \$3.48° \$6.83° 2106	38.28 36,41 40.65 43.47 1885 1882	35.36 33.13 34.37 42.73 2515 2545	38,47 38,30 33,29 34,66 6677 5912	34,09 37.09 41.87 44.88	40.36° 34.40° 42.66° 45.44°	39.87° Dry	39,56 42,85	42,60° 45,60°	44,35 47,35	38.4 34
37434 37436 37937 37980 37980 37971 37974 37964 3767 3768 37761 37761 3768 3768 3768 3768 3768 3768 3768 3768	ST. BE 42.44 NA NA NA NA NA NA NA NA NA		7 30.19 7 44.66 7 44.27 7 41.15 1 50.98 NA 14A 1974 1 1961 1 1974	28.47 28.30 28.30 28.41 28.30 28.41 28.30 NA NA NA	NA 30.28° PP only PP only PP only PP only NA NA	30,07 34,11 34,07 33,18 30,44 NA NA NA 2710 2768 2682 NA	32,66 33,62 32,81 30,66 32,54 34,55 NA NA	24.70 34.67 33.22 31,10 34,34 35.66 2331 2235 2406	22.68' 32.44' 30.41' 31.66' 33.71' 2071 4382 4430 3076	\$2,48° \$0,13° \$1,84° \$3,78° \$3,78° \$768 \$246	31.06° 39.26° 34,3° 1872 1492 1192	\$9.77 37.88 42.18 45.12 137.4 1802 1832	40.96 39.297 43.76 46.72 1866 1913	41.88 59.62 44.18 40.64 1821 1816	\$2.01° 29.66° \$3.48° \$6.83° 2106	38.28 36,41 40.65 43.47 1885 1882	35.36 33.13 34.37 42.73 2515 2545	38,47 38,30 33,29 34,66 6677 5912	34,09 37.09 41.87 44.88	40.36° 34.40° 42.66° 45.44°	39.87° Dry	39,56 42,85	42,60° 45,60°	44,35 47,35	38.4 34
37436 97907 87900 37791 3764 9764 9764 9764 97660 37761 3767 3767 3767 3767 3767 3767 376	12.48 NA NA NA NA NA NA NA NA NA NA NA NA NA	48° 43.6 42.1 A 47.3 A 50.6 A 80.6 A 80.6 A 176 A 209 A 176 A 80.6 A 176 A 80.6 A	9 44.66 9 44.23 7 41.35 1 80.98 NA NA 1974 1 1981	26.38' 26.38' 26.38' 26.41' 36.38' NA NA NA	30,28° PF only PF only PF only PF only PF only NA NA NA	34.11 34.03 23.18 20.44 NA NA NA 2710 2768 2682	32,66 33,62 32,81 30,66 32,54 34,55 NA NA	24.70 34.67 33.22 31,10 34,34 35.66 2331 2235 2406	22.68' 32.44' 30.41' 31.66' 33.71' 2071 4382 4430 3076	\$2,48° \$0,13° \$1,84° \$3,78° \$3,78° \$768 \$246	31.06° 39.26° 34,3° 1872 1492 1192	\$9.77 37.88 42.18 45.12 137.4 1802 1832	40.96 39.297 43.76 46.72 1866 1913	41.88 59.62 44.18 40.64 1821 1816	\$2.01° 29.66° \$3.48° \$6.83° 2106	38.28 36,41 40.65 43.47 1885 1882	35.36 33.13 34.37 42.73 2515 2545	38,47 38,30 33,29 34,66 6677 5912	34,09 37.09 41.87 44.88	40.36° 34.40° 42.66° 45.44°	39.87° Dry	39,56 42,85	42,60° 45,60°	44,35 47,35	38.4 34
37997 37990 37791 37954 37954 37954 37954 37955 37751 37751 37751 37950		A 43.1 A 47.0 A 30.0 A 30.0 A 20.0 A 20.0 A 176 A 20.0 A 176 A 20.0 A 176 A NA	7 44.32 7 41.36 1 50.98 NA RA 1 2006 1 1974 1 1981	26.36 26.36 26.41 26.41 28.50 NA NA NA NA	P only P only P only P only P only P only NA NA NA	34.05 33.16 30.44 MA NA 2710 2788 2882 NA	33.82 32.81 30.66 32.34 34.53 NA NA	34.67 33.22 31,10 34,34 35.66 2331 2235 2406	\$2.44' \$0.41' \$1.66' \$3.71' 2071 4362 4450 3076	\$2,48° \$0,13° \$1,84° \$3,78° \$3,78° \$768 \$246	31.06° 39.26° 34,3° 1872 1492 1192	\$9.77 37.88 42.18 45.12 137.4 1802 1832	40.96 39.297 43.76 46.72 1866 1913	41.88 59.62 44.18 40.64 1821 1816	\$2.01° 29.66° \$3.48° \$6.83° 2106	38.28 36,41 40.65 43.47 1885 1882	35.36 33.13 34.37 42.73 2515 2545	38,47 38,30 33,29 34,66 6677 5912	34,09 37.09 41.87 44.88	40.36° 34.40° 42.66° 45.44°	39.87° Dry	39,56 42,85	42,60° 45,60°	44,35 47,35	38.4 34
37080 3771 37873 37874 37804 37807 37807 37813 37813 37814 37807 37800 37781 37803 37803 37804 44gas 34388 30831 37163 37564 37563 3756	NA NA NA NA	IA 41.0 IA 50.0 IA NA IA NA IA 14.0 IA 200 IA 176 IA NA IA 176 IA NA	41,36 1 50,98 NA NA NA 1974 1981 NA	26.36 26.36 26.41 28.32 NA NA NA NA	PP only PP only PP only NA NA NA	33.1# 30.44* NA NA 2710 2768 2882	32.81 30,66 32.34 34.55 NA NA	33.22 31.10 34.39 35.66 2881 2281 2465 2540	\$2.44' \$0.41' \$1.66' \$3.71' 2071 4362 4450 3076	\$2,48° \$0,13° \$1,84° \$3,78° \$3,78° \$768 \$246	31.06° 39.26° 34,3° 1872 1492 1192	\$9.77 37.88 42.18 45.12 137.4 1802 1832	40.96 39.297 43.76 46.72 1866 1913	41.88 59.62 44.18 40.64 1821 1816	\$2.01° 29.66° \$3.48° \$6.83° 2106	38.28 36,41 40.65 43.47 1885 1882	35.36 33.13 34.37 42.73 2515 2545	38,47 38,30 33,29 34,66 6677 5912	34,09 37.09 41.87 44.88	40.36° 34.40° 42.66° 45.44°	39.87° Dry	39,56 42,85	42,60° 45,60°	44,35 47,35	35.
37761 37954 37954 37954 37954 37957 37761 37761 37761 37954 37950 37761 37763 37954 37954 37954 37954 37954 37954 37954 37954 37954 37954 37954	15 15 15 15 15 15 15 15 15 15 15 15 15 1	A 36.6 A NA A 261 A 200 A 178 A NA A NA	1 2068 1 1974 1 1981	28.38* 28.41* 28.32* NA NA NA NA	PP only PP only NA NA NA	270 270 278 2882	30.66 57.34 34.59 NA NA NA	31.10 34.29 35.90 2331 2325 2406 2540	30,41° 31,66° 33,71° 2071 4382 4430 3678	30.15' 31.84' 83.73' 2556 3768 3245	31.06° 39.26° 34,3° 1872 1492 1192	37.88 42.18 45.12 137.4 1882 1682	39.20 43.70 46.73 1866 1913 1871	39.62 44.18 40.64 1821 1816	29.89 \$1.48 \$6.68 2106 2011	36,41° 40,65° 43,47° 1885 1882	33.13° 34.37° 42.73° 2515 2645	38.30° 33.20° 34.68° 6477 5912	37.05 41.57 44.68	34.40 42.66 45.44	39.87° Dry	39,56 42,85	42,60° 45,60°	44,35 47,35	38.4 34
37878 37807 37807 3780 3780 3781 3781 3781 37804 3780 3780 3780 3780 3780 3780 3781 3782 3782 3782 3782 3782 3782 3782 3782	**************************************	IA NA IA NA IA 201 IA 200 IA 176 IA NA IA NA	NA RA 1974 1981 NA	NA NA NA NA NA NA	PP only PP only NA NA NA NA	2710 2781 2882	87.34 34.59 NA NA NA NA	34,29 35.00 2281 2225 2405 2540	31.66° 33.71° 2071 4382 4430 3676	\$1.84° 83.78° 25% 376% 3246	39.28° 34,3° 1872 1492 1192	42,12 42,12 42,12 18,02 18,02 18,02	43.79 46.77 1866 1913 1871	44.18 40.64 1821 1816	#3.48 #6.68 2106 2011	40.05° 43.47° 1885 1882	\$4.37 42.73 2515 2545	33.20° 34.68° 6677 5912	41.87 44.88	42.00° 45,44°	39.87° Dry	39,56 42,85	42,60° 45,60°	44,35 47,35	35.
37904 misofivity 37607 37761 37761 37761 37761 37764 37600 37761 37763 37763 3764 44366 36351 37765 37765 37765 37765 37765 37765 37765	NA NA NA NA	A 200 A 200 A 176 A NA A NA	1961 1981 1981	NA NA NA NA NA	PP only NA NA NA	2710 2788 2882 NA	34.59 NA NA NA NA	2331 2235 2405 2540	2071 4382 4430 3978	2506 2764 3764 3245	34,5° 1872 1492 1192	45.18 1974 1882 1882	1866 1913 1871	1821 1816	2106 2011	43.47° 1885 1882	42.73 2515 2645	34.65 5677 5912	1007	45,44°	Dry	42,A6	45,60	47.35	54
37690 37761 37617 37684 37667 37660 37761 37673 37674 37676 37676 37676 37676 37676 37676 37676 37676 37676 37676 37676 37676 37676	NA NA NA	A 200 A 178 A NA A NA	2088 1974 1981 NA	NA NA NA NA	14 14 14 14 14 14 14 14 14 14 14 14 14 1	2710 2788 2882 NA	25 25 25 25	2281 22/5 24/6 2540	2071 4382 4430 3078	2556 3703 3245	1872 1492 1192	1374 1802 1632	1866 1913 1871	1821 1816	2106	1885 1882	2515 2645	5477 5912	1007	1746					
37690 37761 37617 37684 37667 37660 37761 37673 37674 37676 37676 37676 37676 37676 37676 37676 37676 37676 37676 37676 37676 37676	NA NA NA	A 200 A 178 A NA A NA	1974 1981 NA	NA NA NA	NA NA	2768 2682	NA NA NA	2408 2540	4342 4430 3078	3769 3245	1492	1802 1852	1913	1816	2011	1882	2845	5912						4400	
37761 37673 37684 27607 37594 37791 37673 37694 H-gab 34366 37163 37164 37163 37163 37163 37163	NA NA NA	IA 176 IA NA IA NA	1981 NA	NA NA NA	W.	2882 NA	_XX	2540	1074		1192	1832	1871		2011			5912						4400	
37475 37664 37664 37667 37676 37761 37676 37676 37664 44-pae 34-pae 36831 37169 37622 37622 37622	NA NA	A NA	100	NA NA	NA.	NA	_ , , , ,	2540	1074					1 151										4400	
37844 37807 37850 37781 37873 37884 H-gab 34385 37884 37883 37883 37883 37883 37883	NA	A "NA		NA.						1000	1313					1913			(765_		2500	1200	1300	1364	300
37607 37500 37500 37761 37604 37604 34360 36831 37163 37163 37621				.L		, NA	1 190						2100	1846	22(2550			1940		MA-KM		1799	1693	
37650 37761 37764 37664 37664 34360 38631 37165 37763 37763		A 6.8	 7 6				<u> </u>	A1111	2880	2070	1307	1953	1964	1927_	No In	1961	2074	Na-PP	2192	1858	NS-NW	NA	NA	NA.	N8-
37761 37873 37864 H-gae 34350 3853 37162 37762 37762 37762	I NA			NA.	NA	6.78	NA.	6.60		8.87	7.02	6.97	6.83	6.55	6.56	6.93	6.60	7.02	6.99	6.99	—	┝──┤	igsquare	oxdot	
37678 37684 34356 3682 37183 37183 37421	HÁ	(A 6.6		NA.	NA.	8,7	NA.	7	8,7	6.6	7.1	7.5	7	7.8	6.8	7.2	6.6	6.9	7.3	7.6		 	\longmapsto		
37004 H-gae 34356 3583) 37164 37302 37421	NA			NA.	NA.	0.0	NA	0.7	0,4	6.0	8.4	1.0	6.8	6.7	3.6	6.5	6.3	- 6.7	-6.6	6.6	NA		NA		NI.
H-gab 34355 3683) 37165 37302 37421	NA			NA.	N/A	NA	NA.	6.61	6.58	0.82	0.49	6.63	L	0.75	6,7	6,65	0.23					434	6.74	6.67	N8
36831 37163 37302 37421	NA.	IA NA	- MA	NA.	NA	, MA	N/A	6.0	6.6	6.7	7/	7	7.1		NE P			NS P	7	6.6	W W	NA.	NA.	N/A	
36831 37163 37302 37421	-NA	AT THE	-			1		L	1																
37163 37902 37421				NA NA	NA NA	NA NA	NA NA	NA NA	NA.		NA	, NA	, NA	NA.	NA.	NA.	NA	NA.	NA	NA.					
37502 37421				NA NA	NA-	- XX	NA NA	MA -	T NA	- W-	. 34	NA NA	NA NA	<u> </u>	NA NA	NA	NA) NA	NA NA	NA.		↓ 	igsquare	igsquare	_
				NA.	i iii	1 ÑÃ	HIX	NA-	1-NA	NA.	11/4	-100-		- NA	NA NA	NA.	NA NA	NA NA	-NA	NA NA				igwdown	 -
	72400	146	0 22500	I N A	FG (50) (4)	3 8630	4.015-01		NA.	NA.	NA.	122	100	177	一流一	-X-	-16A-	NA.	NA.	ÑÃ		 	-	-	\vdash
37526	144)	400 737	340	10.77	H8-P	5500		1730	NA.	NA.	NA.	NA.	NA.	NA.	 \ \\\\	NA.	NA.	HA-	WA-	-KA			-	-	╁
27907			11400	No.	MB-PP	6260		1530		23600	1420	_#	7130	125	1250	77	41700	107000	- BH	406		┌──			
37660				N9-PP			NZ-PP		149100			~60	1480	270	535Q	<\$0	B3900		62	746		Ĺ			\vdash
37673				NA.	<u> </u>	NA.	NA_	_ KA	NA	HA	NA	_NA_	NA	NA.	NA.	NA.	NA	NA	NA.	NA	2630	-50	460	460	
37984				NA.	NA NAPP	NA NA	NA NB-PP	1940	60000		325	100		72	1460		44400		- 60		NH-W			450	
, 9/107	-~	- W	- - MA	100-0	P P	NA.	MD-47P	1280	77200	61600	5390	64	331	790_	X2.(C)	-450	40000	3.25	1080	2140	ME-NW	, NA	, NA	NA.	NA
W= Depth to Water.	÷			+	 	 	1	 -	+-		 	— —			! —-	⊢	\vdash	-			₩	├ ──	——'	—	⊢
P Net Anniaged.		_	+ -	1	 	1	1	_	+	+	┢	 	_	 		 	 	1	+	 	1	├	⊢—	-	\vdash
PP= Hot Sampled P HWW-Not Sampled		. Ornelant e	CHARGE,		<u> </u>	1	1	· · · · ·	+-		<u> </u>	<u> </u>				\vdash	╁	_	 	 	 	╆──	\vdash	 	⊢

			1200	-		A Method E						-	_	_	$\overline{}$											_
	. Date.	MW41	HW-S	WW-F	MW-4	WY-4	WW.7	MW A	MW4 303-48.8	NW-10	WW-11	W-13	WH 12	MYH/14	MAK-18	₩4	## -17	HW-16	W-1	W/41	NW41	W/43	WAS	W144	MW-85	m
mened interval (bg)	1	40-60	30-50	21-17	17-77	30-30	A4'-00	- TUS	70.57-46.0	20°-40'	JA7-40	AU -4V	05.45	7	-		<u> </u>		W-0	27, 73,	yu-uy.	po		- Tr	-/-I-T/	۳
DIW .	Barida	407/02	OH MAY	56.70	23.39	24.65	24.62	_			_			_			_	-								Т
Nept b Water					77		24.10		_																	
	04-01	37.41	37.51	50.19	28.35	- 144	29.70																		· · · · · ·	Ш
	Nov-01	HA	NA.	MA	20.35	26.65	I NA									$\overline{}$										1
	F=0-02	74.7	33,30	37.34 ·	20.66	30.37	29.21										$\overline{}$									⊦
	W. W.	7.77	877	44	20.10	10.20	3007	1 98	34.76								_			_		-	—		-	ŀ
									111		45.70	44.50	41.88	4100	10.00	Tribe	40.46	A's net	25, 25	21.11	49.84		-			t
	D46-62	MA	44.15	7.4	74.70	FP only	100	10 647	33.77	- 15 16 -	15 40	33.07	70.77	4617	-113	175	14.24	36.30	10.00	30.00	40.5			_		٢
	11.0070	100	- 60	30 00	58.84	DO AND	180	187	11.10	- 75 Ti	10 T	31.00	37.20	30.30	30.0	100	1887	34 3	34.30	37.00	34.50	30.80	34.25	37.78	39.22	Ι.
	1777	1112	70	777	9 7 T	F ora	1 114	333	14.2	31.0	10 M	31.7	42.15	43.70	44.19	13.49	40.55	21.37	33.20	11.17	2.0	70.77	20.50	42.66	44.35	Г
	Dec-03	- I	NA.	W.	20.10	FPede	NA.	34.55	20,00	33.71	幼沙	34.5	45.12	41.72	4	14.44	44.47	42,7	24.07	44.55	45.44	Ту	42.80	49.00	47.77	L
	1				1				1"													1				L
VOCs					1																		!			₽
APRINT	Q=0	~ 250	430	-	Na HW	-00,000	1,180													ļ						+
	Pab 02	-825	462.6	A 160	NHP		740	-						_	_		_	-	-	-		ļ		⊢		٠
	14-1-42	1 240	- 7.00	-0.00	NO PP	_NATE	1-70-	HIGH.					-				_	-	_	-		 		_		۰
	Dec-02				保存		1 200	100	1 425	20 000	687	-328	-28	-626	<260	×1.260	-25	28,000	70,000	-225	4125		 			۲
		1 1772	- 1 ANN	- 100	100			NO.PP	1 3 3 3 5	38.666	662 6,766 13,600 6,640	286	-31-	- 33	280	453	1 28	34707	7120	26	126				1	Ť
	13.0	- 122	-000	41,000	No.	- WE H		揮护	-80	40,400	13,600	-125	-25	- 28	452.5	4125	-28	62,760	100.091	1 42.5	4	- 350	-	- 25		
		HQ.		NA	No MW	No. P	I NA	I WHITE	1-46-	71.00	4.40	- 2.6	-45	. 45	- 10."	1125	-4	44,360	HAFF	6	26	119 HW	<u> </u>	-	-5	
			_ K	NA.	110		NA	NO.FF	_4	10.200	2,240	+12.5	4	410	<12.5	Marrie .	<u> </u>	32,400	148-170	1 48	1 400	NO MM	Teste 2	Texas 3	Term 3	Ψ
				Ī			\perp									_	├	<u> </u>		1	1-		-	<u> </u>	_	÷
при на		194			1111	700	4		-				<u> </u>		.	-	ļ	_	╁──	! 	-	+	1			۰
		< 50		73	No.77	110,000*	- 2		+	 	-					_	-		 	 	1 -	+	 			۰
		-21			- Table 1	ME-PP	63.2	_						_	_		1	1								T
		200		175	137	18.7		10,47	80.8	1	1 -		†			<u> </u>		1	1			1		Τ.		Ι
	-17 (XX	1 - 52k -	-77	90.2	NATE	18.77	124	1787		1	 		1													Į
-	Dec 02	1 NA	100	177	MHPP	NE PP	-26		65.2	-160 822	471	19.5	T	₹26	=10	7.	- 41	810	1,160	-1	7.0	 -	₩		<u> </u>	4
	1 May (1)	NA.	172	_12/	No. etc.	144	62.6		. 84	822_	_ M_	19.9	-11	-26	. 40_	100		100	1,100	1	<u>-</u> -	-			44	+
		NA.		-200	North		01		84.4	2650	B20 _	-	=1	-11		67.5	21	 100	300	42.5			 - -			+
		I NA	NA.	NA.	NO NA	NO.				346	770	8.6	품	- 80	12.0			1-22			-	NAME AND	Yable 3	Tarle 3	Table 3	
	O++-02	_ NA_	4	- NA	144-FF	MS FP	NA.	W A	31	- 743	769	- 1,1	*1		12.0	100	+ -,	710	- INDE	 	 	1,44	1	1	7	+
Albanoma (MBO)	Patrick A	NA.	NA.		NA.	NA.	NA.	 						<u> </u>		 	+		1	1						T
month (NCV)	1122	1 700	440.00		No.Ee	_147		+	_	+	 	†	•	1	1	T										_
	1707	1.7 W		1 200	TANK NAME	-12,00	1 100	+	_	1	_			_							L.,			=	1	4
	Feb-02	1-08	465	-500	140.00	MEJP	480	T					1							-	-	_	_		-	4
	A 44 67	1-0 360	-380		TIME		4726	NO.	480		.I		1	L .				1	_	+	+	+	+	_		+
	1040	-2.500	-456	-250	NACT	MEET	+1,345	1 14	-725	L		T	1	 	1 444		- 20	1-K30K	144 200	·	- निक	+	+	+	+	+
	10 to 0	NA		1 260	N-FF			19.7	- 4	113.88	1,160	-126	1 3	- 94	1 2 3 3	1	4-30	146.	1 4 4 4 4	- 2	1 42	+		+	+	+
	Ment-Chi	II NA_					~0.00		-125	21,100	33,400 8,860	1 200	1 20	-70	- 577	1111	135	140	1100	1 200	 "i"		-25	26	- 26	7
	July-03	NA.	-600	= ,000	100		170	NB-FP	1-31-	- 2.00	8,585	1.7		1 3							1 23	THE RE	1 4	-6	- 45	Т
		- K		HÃ.	NO-FF	NA.F		100		4.05	-1.000	- 28	+ 4	41D	412.0	NAT	1 4	T 23,700	18 P	1 46	1 400	IN HA	1	Table :	Territor	ă
	1 200	 'Y	-	+ ~	- marden	148-17	-1-62	1277		1 -,000	1 .,,,,,,,,,,	1	1									Ţ	1			1
	+ -	 	1	+	1	—	1							Ι				1		 -	1	\perp			}	4
	+	1		1 -			1				1 .	T							\		 	-	+	+	, -	4
	 -	1					7						Τ				1	_	-		+	-	+-	+-	+	4

•

·

						HAT PAIN				MRM-10			LMW.44	10044	140 14	144.74	1004-17	100/40	654 .40	MILAY DA	NAME OF	MW. 77	BML73	MM 24	WW-25	MW-26
VQCs Chimostophy	(Fac-02	125 125	110	4100	100/4	185.77 NA.77	17	NACHE .	-100	Mark IV	REST -213	MH-14		M17-1-7	MW-10	MYYANA	ATTE I	WINGS.	<u> </u>							mir-sv
	Oct 02	-800 NA	-80 -240	280	NS-PP	Na P	120	100	-05 -24	-2.000	+126	48	-8	<125	-86	-260		-400	-2.800		-95					
	1		1000	11,600	は押	MW4 RS-FP NA-FP NA-FP NA-FP NA-FP	311	NS-FP	-28 -20 -20	-7.000 -1.000 6.000		-	3	3	-00	-126 -50	3	-2,000 1,078 480	V (XX) 2 (XX)	- 4 -	-39-	NB.UW	9	9	4	4100 4100 NS-MW
•	Date-02	NA.	-82	NA.	N	- (d #)	NÃ.	NO97		624	1,660	- 3			4			-000	Harris	-2		ĺ			1	i
f. - Statement	140-4	17.000	1,180	85 800	1410 NB-FF	2.360 株 中 株 中 株 中 株 中 株 中 株 中 株 中	2.190 2.00		· =					_			=									
	Feb 0	20,800	1976	133	W W	14 7	2,670 8,480	144 415	13/6			_	_		=	<u> </u>										
	00.0	10,400	2.680 1.620	1,136	NS P	NB-FF			188	42,400	16,450	3.030	17,1	171	YALO	3,630	13-	4,365	5,186	312	141					
	Mer (X	NA NA	2,180	-1:228	博华	-244 -	37%	NA PP	1,026	41,800 31,740	44,500 57,600	1,600	17	160	137	- 100	- 3	-5/00	5,10 5,10	174	770	1,200	-3	3	-2	921
	Ger (2	 12 .	<u>-122-</u>	<u> </u>	NS-NW NE PP	- 佐耳-	112	K	- 465	77.00	U,200	7	7	310	282	127	3	6 446	日本	7	2,300	W W	100	ı.	14.3	Nº W
1,2-Okolészpathana	Patrick New Co	28	-400 -400	-80 -800	=100 HG-PP	140 140 FP	31 -600		-					-			<u> </u>							-		
	OH-0	240	=12.5	<126 =166	構構	40,000 NH-11	17		- 384					 			! =						1	=		Ħ
	180	-800	4000	3	100-77	188.PP 188.PP 188.PP 188.PP	製		3	-260	-126	28		4126	+50	28	-5	400	<2.500	-45	-25					
	Jun 0	NA NA	-1,000	-800 -400	通井	NA-PP	100		-12	4000	559	-86	4	-3	4	4	-6	<2,850 4400	388 188 188	- 4	-36 -2	<20	-2	-7	- 4	₹100
·	Geo-0	NA.	NA.	- W	N# W	-1847	W.	NB-PP	-20 -2	-400 -400	103	- 	3	3	4	460 M6-77	2	200	107	-3	- 18	NO MY	7-4-2	Table :	Yebe	<100 N8-NW
1,1-Octoberations	(2.3	3310	3,000	3,400	808 NALES	1248	183			 						\vdash	 	-		Ė			厂		—	
	Call C	130	172	3,800	海 森	1,240 NG-PP 417,000 98-PP	開							-									-			
	8.8	140	3000	2,680	10.PP	NO P	17	North	122	6.00	A 448	-	14.0	400		1 1/4/	+	A 440	42 200	24.6	307	1	=	+		==
	1200	3 - 100 3 - 100	摆	1,418			12	1 1 1 1	1,100	2,546 3,370	2,440	18.6	拼		100	2.500	16	133	14.50 24.20		豫	155	7	-2	42	2,140
	88	I X	- 10	1	No NA	NO.PP NO.PP NO.PP NO.PP NO.PP NO.PP NO.PP	1	1	41.5	1740	1373	7.8	10.0	- 2/4 6/5	22	142	7.0	4,170	NB-P	45.7	188	18 11/4	Tele	Tells	1	5,600 NB-NW
	-						<u> </u>	<u> </u>						\vdash		-	+	_	 	 -	#					
			-	-			\vdash				-								-			\vdash				
								1			.		Ē.		=		+	!		-	-		1			#
				+				 	 	 	 			1			+	+	-	F	1	\vdash	\vdash	+=		
		_	1				-	1"					Ï	1					Ι				<u> </u>			· 1· ···

bia 2 (cont.): Delected	VOCa N	An gu	yndy,	ur di	endo 7	و خاصور		ecored 63				-	-	_	-	_						_					_
VOCA	Date	MW-1	w	<i>~</i>	W-3.	100-4	MW-6	Mary of	MW-2	MAKE A	WW.40	6884-11	MW-12	MW-13	NDN-14	MV4-10	MW4-18	MW-17	MW-18	MW-10	MW-20	MW-21	MW-22	MW-23	MW-24	MW-21	W
730an	1464				NA .	NA.	NA.	NA.																			—
	MovACC	20,000	9.50	8	C700 T	No.FF	Ne CP	240																-			
	00001	10.220		9	7,000 [M - 84	1,560,560	1_194_										_			—	_	-	···-	- -		_
	Page 1	20,100	$_{\rm IIII}$	Q0 I	7.700	M.F	No-FF	284								_	-	_		 	_	-	 		 		_
	46-02							238							_		_	├			_	_	╄		_		$\overline{}$
	9					NHET			10 FP	739	23,200	A 780	360	44.4	ANA	307	974	-	18.100	11,800	0.8	324	+ -	1	 		
	9		11.5	00				霊	福林	680 483	20,500	0,700	- 1	47.6	363	- 446	1.116	7.5		11,776		643		_	•		
								244	NO PP	7A5	24,600	1776	-201	145	- 22	617	1.00	2.3		13,000	7		3,840		4	Ų	
	040-03	- 32	Н	۳	*****	NI AW		T-107		648	0.790	8.050		24.3	-	446	084	4	III burn		4,5	2,480	NO HA		-8	2,4	1.2
	Dec-60				- 12			HA TA	切り	73	17.560	1,650	<u> </u>	10.0	113	1,570	Ma-FP	32	14,600	N#FP	24.7	4,400	NB-MA	Table 7	Yes	7== 2	NA.
			 '''	`+		1993	 -''7''	T							·								<u> </u>	<u> </u>		_	
e 1,2-District ethere	F40-94	NA.	N/	.	NA.	NA.	NA.	NA.			1						<u> </u>				! -	1	 	-	 		⊢
	New-O	7,60	1 -	7 0		MAP	NB-FP	400			1			<u> </u>				}	_	-	-	+	+	 	+		-
	Oal-01	280	4	0		NI NY		33									┢	-		 	+	+	+	-	+	l -	\vdash
	40.00					-	10.77	-10			_	<u> </u>			-	-	-	1		-		 	 	1-		 	-
	400	260				19.55		 20	NS-FF	188	-	— ··		-	_			 			_	+	1	1	1		1
	Oate					MAT		- 38 -	100	- 20	-0,500	4125	-25	-48	4125	455	-210		-800	-0.500	1 46	-25	1	1	1	1	г
_	04042			9		***		1.0	開幕	76	-1000	- 100	80		-126				2,000	1 3300	-6		1	1			Г
	14-07		1 -13			185			No.T		-400	-400	₹10	1 2	1 2	- 3	-50		400	1 =1,000	т-а-	-2	-50	-2	T		Ŀ
	Jun-16				NA.	NO AM			10.74		100	1 46	T.	1 3	 ₹ "	1-1-			-200	100 17	-2	12	INPHY	1 4	4	7.	1
	Sep-03			2 		147		 13 2	114		-400	-400		1 2		-46	NR-FP	-3	-500	No.Ph	-2	- 40	NB-NY	11 14	Table 3	Table 3	N
	1 Carberro	i non	1-3	╍┼	NO.	LINE	1-1		7		 													1	1	1	4
1,4 Digggee	040	 	+	_		NO P	No.	1	No FF		_	1					Τ		L	1		1	-		-	•	╀
Typ Landson	Dec-02	i NA	1 स	200	3,000	No.P	NB-PP	11.00	Name	8,840	-200,000	-2,500	40	-100		00	15,600	1100	10,000	- 90-22	17.	-1-30 0		+—	┿	. —	┰
	Mar-03	1 10	1-10	DOT	4.00	13	NA PP	77,38	NH-PP	7.00	<10.000	-1,000	210	10	-825		1.4	1 92	1 20 00	28.00 -08.00	1112	1-94	<500	 40	-60	-80	12
	No de	NA.	140	XX T	-0,000	TWEE T	144.07	22,300	NE PE	12,400	1-10.00	1-10,000	-250	12.		412	12,000	-3:-	+ 1777	100	1 -120	1 200	11277		-86		
	100.41		N	A		MEAN.		NA.	NB-FF	7.00	-1000		12	10		1100	NO.77		3.00	1	-80	1700	1 20 12	1	1746		
	Dec-61	T NA	ľ	Δ	NA.	NO.FF	NB-T	NA_	NA FP	-450	-10,000	-10,000	120	-50	=100		NO-FF	*04		T DECIT		171,500	110000	1	4		۳
			Н					-	—		1	-		 	-			+	 		-		1 -	1	1	†	Τ
Alternative.	Pab 84				111	1.16	1,410	1 15	+		+	-	_	┿	+	╁		· · · · ·	1	† "	1	1	1	1	T		Т
	Hor-C			8	1,000	Jan 1	1 12 2 3 4 3		-	 	+	+	_		·	+	+	_						_			Τ
		1 #				1	11 100 100	104.4	+	-	+	\leftarrow	1	+	!			1.									Τ.
		77				167		137	NA-FE		+	 	+	+	 	1				\Box	. L.	1					╀
		1 67		-	-21	1		213	1		+	_	1	 	1		T .					$\overline{}$.—	÷
	040-0			7 1	1100	+ 110	16.79	80	NA F	4	1.49	997	276 300	न	3.84	-10	-50	T-	44	1,710			_	-	-		╬
		NA.			140	i iii ii	10 #	100	NA FF		1.200	1 100	200	14.	26.3		425	₹.		3,270	5				┵	1 2	+
		NA.			72	144.77		. 08.3		410	1,400	940			-1	-3				240	-9.5	31 5.3	10 M6-M		+ 4	1 43	+:
	540-G			X I	NA.	1 - (V HATP	_NA.	NS T	-10	1.130	100	1.74		1 7	- 2			740	100 11		- 37	- I MO-171	-11-11-	3 Tale 3	. 17.7∠	ъt
	Dec.01	1 144		A T	NA.	THE	1 10 1		No.	4	1,460	1,140	157	- 5	3	-7.5	NB-ET	- 11	4-2-0	- FRO-FIT		+-7	199-141	1		- I	۳
detrylene Chiodge	1140	J≣PŽ.				T Q6.	1.44	-80					+	-	+	+	+-	+	+	1	+	+			1	1	1
		1,10				他开		140		+	+		+	+-	+	+-	-	+-	-	1	1	_		$\overline{}$	\top		т
		1-12				MB-NA				+	+	+	+-	+	+	+-	+	+	-	-	1	1		T .			T
	(4b.4)					1750		- 30	NB-FT		+	+	+	+-	+	+	+	+	1	$\overline{}$			-				T
	Jun-7			890 I		Ė			NB F				+	+		1	 	_	1	1							Τ
	Colum					NA-P			100.7	1 4	1200	ं नक	-	-48	नक	- 40	-250	1 -6	-490	-2,10 1 12,60	·	-28					4
	Dac-G		تيا۔	• 1		1 4			1		+ 190		1 20	1 - 3	1 12	7-6	17-1128		. 20	12.00	-	<25					4
		2		88		144			NA PA		1 40		+=₹6°		1 2	1 4	-40	1 -2	4400			-			- 4	1 4	ij
				W	- 117	N8-M		NA.			400		-8	1 3	1 4	1 4	-50		-900	No.et		-0'0	NA N	N -2	-1-3	1.3	1
		1 100		~		100					-400		1 4		-2		MAJE	9 49	-200	NO PE	. 4	740	INDIN	AV I Tarbin	2 T 450	3 Take	all.

<u>nisto 2 konst-ji Dajagiy</u>	Andre A	भाग प्राप	17.77		924	ends ii	the PAM	1000	تعداد							<u> </u>							<u> </u>		—		
VOCs	Dete	MW-1	WW.	7 M	W-7	NW-4	MW-4	1006.7	MYLS	HW-9	MW-19	MW-11	NW-12	MM-13	MW-14	MW-18	MW-10	MW-17	MW-10	MW-10	Merit 20	MW-21	MW-22	MW-23	MW-24	MW-25	MW-2
4 Mary 12 parterions	0401	-1,250	7	<u> </u>	130	NO-NW	-12/100		-																		
	F-6-02						MATE	37								1											
		-1.200					ME-PP		NB PF									-				<u> </u>	—	├	.		
	CAT	8	75	9. 1.1.	419. (10.0	10-10-	370	HO-PP	413B	V	-4 - 14		-				- 30	- mc				ļ				
	Dec-02									-38						*Z50	488	-57-	-700	10.100		123		ļ			-
	JAIN-03	NA.				Nati	NB-FP	1.35	- 18 FF		8,160	3.500 6.340					4720			14,400			4360	-26	-28	<28	1.26
	340-03		TXX			NO. NAV	NA-PP		No-FF			1.370				- - 10	-12	- 75	4 100	1977		-37	NIE NO	-8	1 48	=	7.33
	Dec-02	-W	_W3			NEF	NA-FP		MA PP		3 20	41,000	125	'n	-10	-121	NA P	-4	1,110	No.FP	3	-70	NAME	Table 3			
Manadaglene	A-A	186	76		-	LIG LAW	1.460,000	16											-			_	_	_			
reprinted to		140				NA-FF		725	_	┼	-						_						_		i -		_
		- Fix	100						No FF	-1100			····			_				-	_				-		1
	100	- 20	13 3	, ,	3		- W-P		No PP					_			_	-					_	_	_		t
	100000	70.	- 10	0 3	10 I	18.4	MA-P		Ni eb	-31	2.00	-126	- 67	न	4125	-80	-260	<u>-</u> क	-600	2500	-8	- 25					1
•	Mar (A)	HÃ	31.00	<u>āo 1</u> 3	200	No.PP	18.4	1110	MAPP	- 28	766	722	114	10.4	- 15	27.3	99.5	110		1,610		48					•
	Jun-07	-MA	-20	0 1 4	400		144.77	463	NO-PP	-20	450	+400	440	₹	-4.	-4	40		270	3242	-4	<u>-9</u> -				Q	19
	Sep (3)	_NA				NONY			141	-20	400	-400 -4000	72	4	1 4	4_		-2					NO	1.4	1.2	1 3	I12
	Dec-03	NA	NA.		NA	MEAN!	MB-CP	NA.	HH-PP	70	-400	-400	779	- 4	4	-6	MG-PP	-2	-200	Ne m	4	20	N84W	Table 3	Table 3	Table 3	N8-N
n-Propulserame	Jan 42	-260	283	a -	426	144	NO.FF	-28	N8-FF	4100				<u> </u>			†				1	-			1		
	Cal 02	-500	44.3	2.	- 10	M8-FF		4000	Na P	-31									Ľ.								1
		NA				NATE:	MB-FF	ान अ		_3	-2,500	289	10.5	4	47	-60		4	-500	-2,600	4				1		
		I IA				4				-25										2,500		4		└		— —	ļ <u>.</u> .
						-			No. P		+400		-10		- 2	-		-3	4400	17,000		9	-40	-2	1.2	-2	40
	B4p-03		NA.			NBAW				-70		100		-9	4	4	<50		-300-	中	13	19.6	100-00	1 3	1 2	- X -	<10
	Cat (0)	NA.	12	\ 	W	H6-FP	NRS-H-P	NA.	MAN	20	*400_	400_	123	 -	 "	+-	ND-PP	-2	220	PROHIT	22,0	1.440	177733	1000	1000	1100	(190
Terroritorostrana	Fab 94		2.10	9 K	370	7.70	2.130	194																		1	
									╙			<u> </u>				4—	1		┝		_	 	-	-	+	 	+-
•		-100					631,000				-	 	—		_	_	+		_	₩	+	1	+		+	•	-
		- X				10.0		1.2	125.74	122	-		<u> </u>	<u> </u>			1	! 	1		 	}		+	-	_	+
						144					 	 	-	-			+	 	_	+	+	\leftarrow	+	_	 	 	1
						NA A		480	183	XX	- A 1000	-	- etp	1000	100		798	-81	-84-	1.240	9.7	63.1	 	-	†"	_	· ·
		1 700					MB-FF	-60	福神	- 18	- 70	-70	- 747	† "(')	1 3 6	1 200	360	 	-100	1200	37	17.6	_	1	†		
							HELPP		MATE	1 185	466	400	1 75	161	1 975	20.6	48	26.0	4400	1,486	480	- द	T -20	4	431	12.5	1,20
	Tana Ca	1 100	1-10	$\boldsymbol{\vdash}$	₩	0.00	MIT				-400		12.6	1 148	20.3	T 74	273	16.1	-266	No.FF	10.3	255	NB NA	41	10.7	F1_	1.0
	Dec 63			` -	 	NAFF	N8-FP	, ia		4.6		400		10.3	42.1	121	WHP	10	-200	No PP	3.4	(3)	H# MM	7-24	Teble :	Table 3	NB-A
1,1,1-Tilolykoyonthany	Tab.Da	-8356	1.00		444	W 500	114 666	80			-	 	├	 		+	1		 	 				╀-	 	├──-	┪
11.	HARAS	ta ida	+	₩ -	-	100	WAR		1-	+	 	i 	_	1	-	-	1	T	t —	1	Τ'	1		T	1	1	
		336		~ -	126	No.	24, 100,000	ri 31	1		 -	1	1	· · · ·	1		† ·	1		1		i		1	1 "		
							10.75	-10	$\overline{}$		 	1	1	1	1		1	T									
	Jun III	-250	400	W	125	149.77	HAPP"	-35	NB-PP			T		L										1		L	
	1040	-500	1		4	THE 1	1 THE P	-250	140.17	92									L					1			ļ., .
	Dec 42	NA.	- 42	90 -	200	THE P	100 FT	-135	144			172.4				- 40	-246		1,150	21,500		< 8	1				+
							10.0	-12 (14.5		T (200)	<u> </u>	14	1,4	77.6	480	376-	9.5	1 455	37,600	- 3	14	1		_	 _	
		1.8				No-FF			TARK MEN	10.0	1 6455	T =400	10	1.4	4					101.00		1 72			1 2	1 3	12
							14																				

.

able 2 (sont.); Detect	7	ALC: ALC:	400	11 July 12		1000	7															_				$\overline{}$
VOGs	Code	WW.	MONA	E 188	MW-4	MW4	MWT	*MM-0	MW-0	MAN 10	MW-11	1841.12	MW4.13	1005-14	494-16	MW-16	MW-17	Mary 12	MW-18	NW 20	WH	MANAGE	MW-23	1441.54	MW-36	MW.4
VOGs Ydohiorosiisaya	1505	7.66	334	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14,142	1,426	48		 -	100 1/12	100	- ANI 17 - 110 .			W. 1	1000	1000	M14-14						1000		-
	Nov 00	-0.500	1 400	1300	144	140.77	-900																			_
	00001	-100	- 16	100	NA-NA	/1783.000	<u>~~10</u>	ι	Τ.	$\overline{}$																
	11.44		25	240	NB-FF	MBATE														1 '						
	- P-02		~50t	184	NA.PR	Marie Park	-25	Market	1,400												<u> </u>					
	04402						-100	NAME												1	Γ					
	Dec (ta		- 100		100), 4FP	40	NB-PP		-1,000	-200	128	77.2	-88	-90	274		040		24	55.7					
						1947	1 40	Nair		-133	-300	-00	20.0	-80	134	400	7.4	010		<u> </u>	31.7	├		1		1
	Jun 100				No PF		. 480	NS-FF	45,5	_ 4 97	<u> </u>				<u> </u>	2,00	# # # P		3,000	110	95	-90			-334	-143
	8 ap 03				No AV		NA.			-400	_	_7.		134	 13	2,030	3.0	400	No.PP	27	100	MB-NW	-3	1119	77	3,10
	Dec-03		*	NA.	No. 21	<u> </u>		No.	1,7	-400	-400	-6	47.	22.6	9.3	NB-FP	7,3	160	TRO-FF	- ·	149	PHO-PHYY	1800	T DROWN'S	Teble 3	NOW
247A	- ALM	-4-866	100		- Dares	V WITH SOME	 −	-		<u> </u>	 		_		-				_	_	_	├──		-	1	
<u> </u>	1777			-+ 3	LIA. D	1200	234	_	_	-			—−		_	-				-	-	•	\vdash	-	! 	-
	1350				NO.77			NA AB	सळ	_	-	-	_	-	_			├─	_	 		-	\vdash			
	040				NA P		1 177	1111	1 700		_	_	_				—		_	· ·		1	-	$\overline{}$		
	Dec 02	NA.	292	1 100	Mari	144	ो संक्र	100	- 3	2000	2,120	TAM		776	-85	-250	-8"	140	2,600		-स	•	-			_
	May 03					1 10 1				136	200	1700	46		-35	288	330	2,400	1,000	4	-25	1		T	1	$\overline{}$
	i ind					1 _ NB 17				1723	1785	20	- 2	-2-	-3-	-40	-2-	2.670	1.000	11.5	18.5	- 426	-2	-2	-4	<10
	1840-03		THE NA		HE HV	46-20-	L HA		l -20	(200	1,64	110	₹ 2	1 4	-4	-40	-4		MSEP	्व	10.5	WH CH!	-4	1 3		- 55
	Dec-03		NA		100 (4)	5 PUBLISH	NA.	1147	1-36-	1248	1.82		-2	1_4_	-	No. PP	T - 4.		M8-FP	80.1	-440	144 WV	Y-4-1	10.00	1000	NO-1
								T	T		Τ"	$\overline{}$												1		
1,3,5 Tab - 197 - 1981	ा ज्ञारा	L 70.				6,400,00	25.25	T						_		<u> </u>										
				136	No P	NO PE	46.6								Ь		١	1						4		
	Junda					10.77		No-PP			Т.					1					_			↓	1	₩.
	_ C++02		1.073		_1,00-73	1 H		LMHE	. 44	L		L	_	- 188				_	A 100	+		 	<u> </u>	┼—	-	
	240-02			1 200	168-7	16.77	-126	I NO FP	4	2,000	570		<u> </u>	 	- 2 2		-2-	-31	300		35	-	-			├
	Nas-13									348	973				1 3	-10	- 3	- 515	1,830			-30	2	1-2	-0	410
	747-00					74.77	1.3	TAPE	₹20	368	446	19	₹-		44	-50	1 3	400	HETT	1 2		NA NA		1 3	+ 3	137
					NO PE	V ABTP		I BT	-20	.40	570	<u> </u>	₩.	-4		MATE	l ă	460	1 1 1 1	44	1 - 11	14400	1		1224-3	
<u> </u>	Dee-09	NA	_ AA	NA.	N#-11	MATE	- NA	NEFF	-90	412	500	204	 3 4-	1 7	170	MATE	+	474	PETE	14.4	1 770	The care	7225.6		14000	I TOCAL
Talvene	Pak Ba	AAA	7.30	4 874	140 70	14300	304	 	+	-	+	_	—	+	+	-	-	_	$\overline{}$	+	1	 	+	-	† 	-
l amazina						NEFF		+	+	+	+	-	-	1	1	1	1		1			1		 	+	1
	3321					V 2010.00		+	 	 	+	_	_	1	 	1	 			1				1	1	 "
	100-02					NAC PER		-		+	+	+	+			$\overline{}$	1-	1		1			+	$\overline{}$	1	1
							-1-15	1837	440		+		 -			1	1		1	1	1	1	1	1	1	$\overline{}$
	040	100		7.6			2,550	187	-	1	_	_	-	1			1							T =		Į
	1000	i NA	. 10		. III			14.77	-8	10,000	1,290	20.5	1.3	2,840	144	- 60			(3,600							
	144 00				1 144 4		444	1 140 77		12,000	73.66	1 7 7 8	T-7	200	10	28	1	3,970	11400	<u> </u>	4					
	-July-00	I NA	-10	0 2.0	Ī	New	73	1 46 77	-415	10,605	4,620	च	- A	. =	-2.6	426	[]#I	6,810	13,300	7.2	न				-	
	1 6 cc 6 3	NA.				VI_14417			्न		4,080		ान_		1 2	428		3,700	NA P	-5	10	NB-MA	- 41	-41	-41	10,5
	T1 20 01		2	NA.	NS-F	P. NB-PP	NA.	J N& FP	*	18,800	6,670	9.7	-	1.3	1.32	HOM	4	2,350	No-PP	14,0	-1	N#-MV	Table 1) Teste:	Term	Na-
															-		 		₩	 	+	+		-	+	\leftarrow
Viryl Chloride	04401			- 4	N= N	V) -15,000	110	+	_	+	1		حتتا	-	-		+	+	-	+	+	+		+-	+	+-
	+	I XXS	107		-1434	1	517	1		+					+	\leftarrow	+	-	┿	+	+		-	+	+	+
	+20%	1.129	 3	- 18	. H (1) T		- 510	1 2 7	123	-	ļ	-	⊢-	+	+	+	 	+	+	+	 	+	_	+-	-	+-
	1037			g T. A.	O NO-M	NO.PP	684	1 2 1	122	1 400	194		 -	1-26	1 84 4	566	4	4566	-1,000	-3	28,1	+	 	1	+	┿
	100		137		NO.7		100	100	32	+ 223	1,100	- 277	- 87 -	Total Control	1 774	1467	-20	44 000	630	*	22.6	1	 	1-	+	-
			+ 1/17				-1-89	1.00	1 77	+ 171 %	1,33	1 700	- (1	1 3 -	1 17 -	1 3	1-3-	400	1 47,200	1 -	1 2	1 660	1-8-	1. 2.	1-3-	-10
	- Aug-13	 -W	-1**	* *tX	100.0	7	- 171	+ 100	1 44		 - 3 18-		 -₩	10	1 8	T-144	1-3-	1-86	144	1 2	31.0	TNE SAM	1 - 3 -	t a	- 3	ु ना
					-1767			186			1.530		 ~ 3 ~		1 34	No.	1 2	- 200	I NO P	1 4	47.3	114	1		Table 5	
	-	+	+ -	46	-1.00-	190-7		1.85.		1 2/00	1,000	+ -2.1	1 ~ -	1	1	1	1 -	1	1	<u> </u>	1	1	1	1	1	1
				_					_	-		_				,	-	_	_		-			_	_	

.

!

Table & loors & Detecto	1 VOOA †	COM BAC	induse.	r Barrier	Junior .	ering (PAN	كة لمجاله	(ايس) ۵				Г	1	Ι	T		Т.			_		Ι.	. "			
												<u> </u>														
VQG ₀	Date.	MW-1	HW-F	WW-1	T WW 4	1 MALE	MW-7	MW4	MW-4	MW-10	WW-11	100 12	MW-13	1004-14	MW416	MN-14	MW-17	MW-18	MW-se	MW 20	164 21	MN 22	MW-72	WW 26	MW 75	Y07-25
X-			7,740			4.710	1865										<u> </u>								تــــــــــــــــــــــــــــــــــــــ	
	Nov-00	1,400	<500		No FF		147	<u> </u>																		
	040	2,770	9	1 4,720	THE W	/ 10,370,000	201														•					
	448	1,740	14.1	3.070	NO PP	HA-PP	200						•													
	hn-02	8,240	_142	3,000	I NOT	1 10 1	1444		_40_	I				=						Γ.					اتست	· · · · · ·
	Oat 22	3,570	73	1,2,570		NB-P!	470_	I WEF.	II-4-					£			T									
	Dec-02	NA.	355	2,366	NB-FI	NB-FP	121	T.M.FF	6	4,690	748	242	न	1,780	-10	=50	. न .	2,690	3,840	न	-6					$\overline{}$
	May 03	100	316	2,100	NA.P	Na.4	918	NB-FT	10	2,320	1670	32.1	4	100	40	60_	L-3-	.4,200	4,160	4	8.4					
	Jun 03	NA.	170	1,760	1 144 17	1 141 179	224	No. PP	410	4,540	1.84	-4	4	*	135	-25	न	3,050	6,040	9.3	-	<10	Ŧ	ż	-41	1,000
	(m-45	L NA	I NA	I NA	INT-NV	/ 144-77	NA	100	<10	1,440	1320		*1	41	*		*	2,630	No.	-		NH HW		ļ	-41	1 3,070
	(Sec-03)	NA.	T (A)	394	T 188.7	100	T NA	IN HE	77	4,840	2,020	167	- 41	1 3	r: 14	110-77	-1	2.610	114		91.0	NIE NW	13.3	1	THE T	_ TERPEN
																										1
NA- Not Applicat.		L										L			└							1				
NS-PP- Not Beneded Pr	er Providen	Name of						L		1																
MONTH NO. BELLEVIEW PROPERTY.		3	-																						<u> </u>	
= Abandanes Well.					1.	1				1	1	1.	\Box			Ĺ			<u> </u>		1				<u></u>	
" - Annyala of Press Prod	<u> </u>			$\overline{}$	1.	l T	J			I			T			Τ.		1	1				1			
Muse Chambath stored o						٠.				$\overline{}$									T							
Reg - Transferration co	antique.		Τ"	1		1	T					T .			T					I				I		Γ

	Date	Depth	MW-23	MW-24	MW-25	-
reened Interval (bg)			71'-81'	67'-77'	71'-81'	
DTW	15-Dec-03	 -	42.65'	45.69'	47.35'	
					177,44	
VOCs	45 5 64	4.51	-05		- 05	
Acetone	15-Dec-03	1.5'	<25 -25	<25	<25	
		7.5'	<25	<25	<u><25</u>	
Benzene	15-Dec-03	1.5'	<1	<1	<1	
		7.5'	<1	<1	<1	
2-Butanone (MEK)	15-Dec-03	1.5'	<25	<25	<25	
Z-DUIGHOIRE (IMEN)	12-040-03	7.5	<25	<25	<25	
		۲.٠٠	-20	723	25	- -
Chioroethane	15-Dec-03	1.5'	<2	<2	<2	
		7.5'	<2	<2	<2	
4 4 Pinhing 14	45 000 00	4 61	<u> </u>			
1,1-Dichloroethane	15-Dec-03	1.5' 7.5'	< <u>2</u>	<2 <2	<u>√2</u> √2	
		7.5				
1,2-Dichloroethane	15-Dec-03	1.5'	<2	<2	<2	
		7.5	<2	<2	<2	
1,1-Dichloroethene	15-Dec-03	1.5' 7.5'	6,1	<2	6.2	
		7,5	6	. 14.6	7.4	
cls 1,2-Dichloroethene	15-Dec-03	1.5	<2 ⁻	5.7	<2	
· · · · · · · · · · · · · · · · · · ·		7.5	2.4	8.8	3.4	
trans 1,2-Dichloroethene	15-Dec-03	1.5	<2	<2	<2	
		7.5	<2	<2	<2	
1,4 Dioxane	15-Dec-03	1.5'	<50	<50	<50	
1,4 Dioxario	10 200 00	7.5	<50	<50	<50	
Ethylbenzene	15-Dec-03	1.5'	<1	<1	<1	
	ļ	7.5	<1	<1	<1	
Methylene Chloride	15-Dec-03	1,5'	<2	<2	<2	
West Mone Change	12-090-03	7.5	<2	- 2	<2	
						
4-Methyl-2-pentanone	15-Dec-03	1.5'	<25	<25	<25	
		7.5'	<25	<25	<25	
Naphthalene	15-Dec-03	1.5'	<2	<2.	<2	
i sebila idia) ja	10-060-00	7,5'	2 2	√2	- \2	-
	<u> </u>					

.

.

	Date	Depth	MW-23	MW-24	MW-25	
VOCs			·			
n-Propytoenzene	15-Dec-03	1.5'	2	. <2	<2	
		7.5'	<2	<2	<2	
Tetrachioroethene	15-Dec-03	1.5'	14.8	24.3	37.2	
		7.5'	30.6	75.4	37.1	
,1,1-Trichloroethane	15-Dec-03	1.5'	2.6	-2	<2	
-		7.5'	3.2	2.3	<2	
Trichloroethene	15-Dec-03	1.5'	7.9	49.3	39.4	. <u>.</u>
		7.5'	11.3	51.4	38.5	
2,4-Trimethylbenzene	15-Dec-03	1.5'	<2	<2	<2	
		7.5'	<2	<2	<2	_
3,5-Trimethysbenzene	15-Dec-03	1.5'	<2	<2	<2	
		7,5'	<2	<2	<2	
Toluene	15-Dec-03	1.5'	<1	<1	<1	
		7.5'	<1	<1	<1	
Vinyl Chloride	15-Dec-03	1.5'	<2	.<2	<2	
		7.5	<2	<2	<2	
Xylenes	15-Dec-03	1.5'	<1	<1	<1	
		7.5'	<1	<1	<1	
V= Depth to Water.				<u> </u>		
th= Depth below measu	red groundwate	er.	l	I		

Total Organic Carbon Dec-03 NA NA NA NA 12 198 1100 3 1.6 2.8 2.4 NA 0.9 100 NA 2.2 3.4 NA NA NA NA NA NA NA N														€.								
Composition Date Minus							1				0 Ama/Li	uthod 450	nedera n	ay and &	Colorima	ad, 180,1;	7386,74	62.1, '3 7 8.4	1, 310,1 <u>,</u> 3	74.1, 328 .3	Aethods 3	shie 4. Results for SPA 6
													í.		•							
Total Crigamin Carthon Doc-03 NA NA NA NA 13 225 105 3,7 1.9 3.1 2.8 NA 1.2 110 NA 2.5 3.7 NA NA NA NA NA NA NA N		MW-25																				
TDB	NA.	NA.	NA.	,NA	3.4	_23_	_ NA	ten	0.9	MA_	24	2,9	1.5		100	184	14	_ NA	- mn	190		MANAGED CARRIED COM AND
TOB	NA.	NA.	NA.	NA	37	28	. NA	110	19	NA	28	3.5	1.0	3.7	105	225	13	NA	NA	NA	Dec-03	Total Orbanic Carbon
\$\frac{6-9-03}{\text{ NA} \text{ NA} \text	+ 127	- ```	 -	 	-		,	-110			L.0	- V	- ''*									
Dec-03 NA NA NA 1,280 1,640 1,800 750 1,160 1,140 1,220 NA 1,170 1,880 NA 1,220 1,170 NA NA NA NA NA NA NA N					1,230								1,260	639			3,040					TDB
Total Abaility		876			1.74																	
Sep-03 NA NA NA NA S45 660 856 458 473 370 4446 650 475 965 NA 433 440 235 235 236 34 NA NA NA NA NA NA NA N	- NA	NA.	TAA.	N/A	1,110	200	-NA	1,840	1,170	····NA	1,280	1.140	1,160	730	1,490	1,840	1,250	NA	NA.	NA	Dec-03	
Sep-03 NA NA NA NA S45 650 855 673 370 444 650 675 965 NA 433 440 235 235 235 34	—	Ь—			484	18.1	1 484	7.00	JAK			—, <u>,,</u>		785.8				#04	840	486	h- 00	Taral Albaniana
Dec-03	 		1 755																			1998 ARRENTY
Carbonate/Ricartopath Ling-05 555 768 1,080 612 1,122 1,152 348 816 518 848 728 852 1,280 1,710 810 867 862 282 308 44	870 NA	350 NA												740								_
Bag-35	 ~~	188	- PA	I RAM	924	7/1	MA.	420	****	100	440	300	1447	 -	_~* _			193	- 197	197	CHICAGO	-
Bag-201 NA NA NA S24 658 847 204 281 210 279 NA 286 562 NA 287 318 NA NA NA NA NA NA NA N	+-		 		867	#10	1,710	1.230	\$460	726	546	518	816	343	1.152	1.122	612	1.000	766	562	ا ده-رسا	Carbonata bicarbonata
Dec-03 NA NA NA NA NA NA NA N	604	420	306	282																	840 00	
\$\frac{84.9C}{2}\$ NA NA NA 241 \$10 \$43 \$7 \$6 142 \$106 \$40 \$170 \$266 NA \$2 162 \$162 \$71 76 \$162 \$160 \$160 \$150 NA 106 \$63.3 NA \$2 162 \$13 NA NA NA \$2 162 \$12 \$18 \$160 \$150 NA \$106 \$160 \$150 NA \$	NA	NA.	NA	NA	318	257		88.2	256	NA "	279	210	261	204	\$47	622	324	NA	NA	¥	Dec-03	
\$\frac{84.9C}{2}\$ NA NA NA 241 \$10 \$43 \$7 \$6 142 \$106 \$40 \$170 \$266 NA \$2 162 \$162 \$71 76 \$162 \$160 \$160 \$150 NA 106 \$63.3 NA \$2 162 \$13 NA NA NA \$2 162 \$12 \$18 \$160 \$150 NA \$106 \$160 \$150 NA \$	\bot					L						L										
Dec-03		<u> </u>																				
8um06 Jan-03 40.02 1.8 0.84 40.02 0.8 3.89 40.03 40.03 40.03 40.02 40.0	320	<u> </u>																				
Beg-05 MA NA NA NA C1.05	NA.	_NA_	- NA	NA	135	99.1	NA.	99.3	101	, NA	113	160	108	74.4	344	363	234	NA.	NA .	NA.	_Dec-01	
Seg-03 MA NA NA CD,05 CD,0	+-		1		-8.00		140	A 48		-5.65	-3.45	-					-8 64	674		-8.00	h- 00	W
Dec-03 NA NA NA C-0.05 C-0.	5 16.6	<0.06	-O NE	-0.08																		eueno .
\$\frac{\pmu}{\pmu}\frac		NA																				
Sep-03 NA NA NA NA 250 96 26 65 220 222 287 NA 216 250 NA 216 220 118 184 2		1	1 '	1 '*'		 	,,,,,	7.44			7.27		1	7.55			7.77	177				
Sep-03 NA NA NA 250 90 28 65 230 202 288 70 216 88 NA 215 220 118 144 2	\neg				182	176	5.74	26.3	206	104	279	162	214	108	7.9	8.67	284	15	32.6	63.2	Jan-03	Guiffaire
Mile		210	184	118	220	215			216	10	148	272	230	85						ž	3up-03	
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	NA.	NA.	NA.	NA.	267	501	- NA	T 82 a	347	_NA	247	100	633	- 17	10	(0.3	763	<u> </u>	NA.	1	Dec-03	
\$\begin{array}{c c c c c c c c c c c c c c c c c c c								L.,_		L.,				ļ.,,,								
Dai=03 NA NA NA NA NA NA 25.5 5.21 5.00 1,16 17.4 20.0 24.2 NA 20.1 1.14 NA 21.4 22.8 NA					23,5																	Mirata
Total Iron Jun-03 <0.1 0.2 1 <0.1 0.2 10.7 0.10 0.14 <0.1 0.2 <0.1 0.2 <0.1 0.43 0.8 0.8 0.8 0.8 0.22 <0.1 0.45		. 0.01 NA																				
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	187	- mn	I NA	T THE	22.0	21.5	PIA.	7.1%	- ди. ј	TRA .	- 24	20.9	37.4	1,19	A,P0	0.41	20,0	<u> </u>		CEA,	LABORAD	
869-05 MA NA NA 40.06 02.3 16.7 0.41 40.05 40.08 40.08 02.8 14.4 NA 40.05 40.05 40.05 0.1 4	+-	+	 	1	45.5	6.35	0.8	0.6	0.43	-c0.4	02	401	D 14	0.1p	10.7	0.3	50.1	1 1 "	0.9	₹0.1	Jun-01	Total Iron
	6 0.44	-0.05	6.1	+6,65														NA.				170-7070
	NA.	NA	NA.																			
				T																		
Farrous iron Jun-03 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,0				1									-0.08	40.05								Patrous Iron
		-0.05														3.2	-0,05					
Dan-dis NA NA NA Q319 1.43 2.32 0.73 0.16 0.21 NA 0.22 1.89 NA 0.14 0.17 NA NA I	N/A	NA.	HA.	HA.	0.17	0.14	I NA	1,89	0.22	, NA	0.24	0.25	0.16	0.73	2.33	5.43	Q.19	<u> </u>	NA.	NA	Dec-08	
Marganese June3 40.1 2.1 0.67 40.1 1.42 0.7 1.6 45.1 40.1 0.4 0.6 40.1 0.94 1.77 40.1 0.45		+		+		 	1 400	A 82	-	 	1 A.			l	1 44	1 2/2					1 22	Managana
	5.21	0.09	6.07	-0.00				U.V.#4														
		NA.						8.04														

Appendices

A

•

•

.

•

WELL GAUGING DATA

Project # 03/209-ZM/ Date 12/9/03 Client Blakely Env.

Site 8915 Sorensen Ave Souta Fe Springs

Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Volume of Immiscibles Removed (ml)	Depth to water	Depth to well bottom (ft.)	Survey Point: TOB of TOC)	·
MW-4	4		26.35	0.04		26.39			
MW-6	4/	odor	30.2/	0.08			30.29		
MW-8	4		33.89	0.66		34. 55.			
MW-9	Ч	,				36.96	45.81		
MW-10	4					33.71	40.62		
MW-11	<u>م</u>			<u>-</u>	g ,	3 3.73	39.85		
NW-12	2		-, — -,		-	34.30	46.06		
MW-13	2 -				4 4 9 1	4512	62.47		
MW-14	ဉ		-		* * * ! !	46.72	65.19		
MW-15	2		7 		, 1 1 1	46.84	64.64		
MW-16	<u></u>		36.08	77.0		36.85			
MW-17	2					43.47	66.47		
MW-18						42.73	46.17		
MW-19	2_		34.00	4.65		38.65			
MW-20	a				*	44.53	67.60		
MW-21	<u>ə</u>	-	•	4 , , , , , , , , , , , , , , , , , , ,	*	45.44	63.25		
MW-33	7		-	• • • •		Pry	40.15		,

WELL GAUGING DATA

Projec	rt# <i>_031</i> 2	209-ZMI	Date	12/9/03	Client Blakely Eav.	
	•					
Site	8915	Sociasen	A ./~	Santa F	Sacions	

Well ID	Well Size (in.)	Sheen / · Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water	Depth to well bottom (ft.)	Survey Point: TOB o TOC	
MW-23	4	; ; ; ;				42.65			
MW-24	4					45.69	· <u> </u>		_
MW-25 MW-26	4			,		47.35			
MW-26	2	! ! ! !				39.60	39.75	V	-
	<u> </u>					-			
				,					
	•								
	•								
					·				
					•				
			:						
					,	_		·	
	•				-				
					-				
7.				· ·					
			. ,						

Project #: 03/209 - ZMI Client: [3lakely Env
	2/9/03
Well I.D.: NW-4 Well Dia	meter: 2 3 🐠 6 8
Total Well Depth (TD): — Depth to	Water (DTW): 26.39
Depth to Free Product: 26.35 Thicknes	s of Free Product (feet): 0.04
Referenced to:	ter (if req'd): YSI HACH
DTW with 80% Recharge [(Height of Water Column >	(0.20) + DTW]:
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other	Sampling Method: Bailer Disposable Bailer Extraction Port Dedicated Tubing Other: Disposable Bailer
(Gals.) X = Gals. 1 Case Volume Specified Volumes Calculated Volume	Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 3" 0.37 Other radius * 0.163
Temp Cond. Turbid Time (°F or °C) pH (mS or \muS) (NTU	Js) Gals. Removed Observations
No Sample taken	
Did well dewater? Yes No Gallons a	actually evacuated:
Sampling Date: Sampling Time:	Depth to Water:
Sample I.D.: Laborato	ry:
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenate	s (5) Other:
EB I.D. (if applicable): @ Time Duplicate	e I.D. (if applicable):
Analyzed for: TPH-G BTEX MTDE TPH-D Oxygenate	
D.O. (if req'd): Pre-purge: mg/L	Post-purge.
O.R.P. (if req'd): Pre-purge: mV	Post-purge: mV

Project #: 03/209 - ZMI	Client: Blakely Env							
Sampler: ZM	Date: /2/9/03							
Well I.D.: MW-6	Well Diameter: 2 3 4 6 8							
Total Well Depth (TD): 30.79	Depth to Water (DTW):							
Depth to Free Product: つるっつし	Thickness of Free Product (feet): 0-08							
Referenced to: FVO Grade	D.O. Meter (if req'd): YSI HACH							
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]:							
Purge Method: Bailer Disposable Bailer Positive Air Displacement Extract Electric Submersible Other	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer tion Pump Extraction Port Dedicated Tibing Other:							
	Well Districter Multiplier Well Dismeter Multiplier 1" 0.04 4" 0.65							
(Gals.) X = Calculated Vo	Gals. 2" 0.16 6" 1.47							
Temp Cond. Turbidity Time (°F or °C) pH (mS or μS) (NTUs) Gals. Removed Observations								
- SPH detected .	Vinterface probe							
No sample -	taken —							
Did well dewater? Yes No	Gallons actually evacuated:							
Sampling Date: Sampling Tim	e: Depth to Water:							
Sample I.D.: Laboratory:								
Analyzed for: TRH-G BTEX MTBE TPH-D Oxygenates (5) Other:								
EB I.D. (if applicable).	EB I.D. (if applicable): Duplicate I.D. (if applicable):							
Analyzed for: TPH-G BTEX MTBE TPH-D								
D.O. (if req'd): Pre-purge:	Post-purge: mg/L							
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV							

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Project #: 03/209 - ZMI	Client: Blakely Env								
Sampler: ZM	Date: /2/9/03								
Well I.D.: MW-8	Well Diameter: 2 3 4 6 8								
Total Well Depth (TD): 🕏 ———	Depth to Water (DTW): 34.55								
Depth to Free Product: 33.89	Thickness of Free Product (feet): 0.66								
Referenced to: PVE Grade	D.O. Meter (if req'd): YSI HACH								
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]:								
	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer ion Pump Extraction Port Dedicated Tubing Other:								
	Well Diameter Multiplier Well Diameter Multiplier 1								
(Gals.) X = Calculated Volumes Calculated Vol	Gals.								
Temp Cond. Time (°F or °C) pH (mS or µS)	Turbidity (NTUs) Gals. Removed Observations								
	takon —								
Did well dewater? Yes No	Gallons actually evacuated:								
Sampling Date: Sampling Time	Depth to Water:								
Sample I.D.:									
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:									
EB I.D. (if applicable): Duplicate I.D. (if applicable):									
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5) Other:								
D.O. (if req'd): Pre-purge:	Post-purge: mg/L								
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV								

									_
1	Project#: C	3/209	-Zr	1/	Client:	Blak	ely Env	•	
S	Sampler:	2M			Date:	12/9	103		
1	Well I.D.:	MW-	9 .		Well D	iameter	2 3 4	68_	
[-	Fotal Well I	Depth (TD)): <u>4</u> 5	5-81	Depth t	o Wate	r (DTW): 36	96 (36.90
ו	Depth to Fre	e Product:			Thickn	ess of F	ree Product (fee	et):	
	Referenced	to:		Grade	D.O. M	eter (if	req'd):	(3) 556	НАСН
<u>'</u>	DTW with 8	0% Recha	rge [(H	eight of Water	Column	x 0.20) + DTW]: 3	8.73	
1	Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	isplaceme		Waterra Peristaltic ion Pump Led i Llo		Sampling Method: Other:	C <u>Dispos</u> Extra Dedica	Bailer able Bailer ction Port ted Tubing
	Start @	0942 (D 1/2	apm	[;	Well Diamete	r Multiplier Well	Diameter Mul	Unlier
		Gals.) X	3 Fied <u>Volum</u>	_ = <u>17.1</u>	Gals.	1" 2" 3"	0.04 4* 0.16 6* 0.37 Othe	0.6: 1,4; r rad	1
	Time	Temp	рΉ	Cond. (mS or)		oidity TUs)	Gals. Removed	Obse	T vations
)	0948	22.9	67	2568		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	6	P.O. 1	0RP -2.0
]	0950	22.9	6-8	2574		5	12	0-11	-4.6
i	4959	(4)	sell	dewatered	@	16	ag/		01.42.90
[1331	69.3	6.9	2585	-	7 .			160
ļ	Did well de	water?	Y 83)	No	Gallons	s actuall	ly evacuated:	8	
	Sampling I	Date: 12/	0/03	Sampling Time	e: /3I	3/	Depth to Wate	r: <u>37</u> ,	,91
, 	Sample I.D	. MW	-9	· .	Labora	tory:	STS .		
	Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygens	ntes (5)	Other:		
1	EB I.D. (if	applicable): .	@ Time	Duplic	ate I.D.	(if applicable):		
ţ	Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygens	ates (5)	Other:		
	D.O. (if red	q'd): P	re-purge:		mg/L	F	ost-purge:		****/ _L
,	O.R.P. (if 1	req'd): P	r e -purge:		mV	I	Post-purge:	,	mV

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Project#: 03	3/209	-2M	11	Client: Blakely Env						
Sampler: Z	M			Date: /2/9/03						
Well I.D.: 🖊	1W-11	0 .		Well Diameter: 2 3 4 6 8						
Total Well De	pth (TD)	: 40	1.62	Depth t	o Water	r (DTW):	33		110/43	
Depth to Free	Product:	.,	•	Thickness of Free Product (feet):						
Referenced to	:	€ ₹€	Grade	D.O.M	eter (if	req'd):	Č	4\$1 222 E	IACH	
DTW with 80	% Recha	rge [(He	eight of Water	Column	x 0.20)) + DTW]:	<u> </u>	5.09	·	
D:	ailer isposable Ba ositive Air D lectric Subm	isplacemer ersible	ot Extract		6 Well Diamese		tber:	C Disposal	d Tubing	
11 ////	is.) X	3 ied Volum	<u> = </u>	_ Gals.	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47	s ² * 0.163	
Time	Temp °F or ©	pН	Cond. (mS or (S)	•	idity Us)	Gals. Remo	ved	Obser	vations	
/300 /2	231	6-6	2718		<u> </u>	5		0.19	-54.2	
1303	23-1	6.6	2852	3 10 0.14			-60.9			
1306	233	6.6	<u> </u>	(<u> </u>	14	_	0.12	-63.0	
							_	· .		
								· ·	}	
Did well dew	rater?	Yes	<u></u>			y evacuated		4		
Sampling Da	te: /ょ//	0/03	Sampling Tim	e: 150	o-7	Depth to V	√ater	: 35, <u>5</u>	5 (72kr.	
Sample I.D.:	Sample I.D.: MW-10 Laboratory: STS									
Analyzed for	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:									
EB I.D. (if ap	EB I.D. (if applicable):									
Analyzed for	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:									
D.O. (if req'o	D.O. (if req'd): Pre-purge: mg/L Post-purge: mg/L									
O.R.P. (if red	q'd): P	re-purge:		mV	F	ost-purge:			mV	

Project#: ¿	31209	-2M	4	Client:	Blak	ely Env				
Sampler:										
Well LD.:	MW-	.		Well D	iameter:	· ② 3 4·	68_	 /		
Total Well I	Depth (TD)): 3	9.85	Depth t	o Water	(DTW): 33	5.73('	33.45)		
Depth to Fre	e Product:	<u>'</u>		Thickn	ess of F	ree Product (fee	et):			
Referenced	to:	(PVC)	Gradė	D.O. M	eter (if	reg'd):	<u>(13) 22.8 </u>	HACH		
DTW with 8	0% Recha	rge [(H	eight of Water	Column	x 0.20)	+DTW]: 3	5.01			
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	isplacemen		Waterra Peristaltic tion Pump		Sampling Method: Other:	Disposa Extrac	ailer able Baile rion Port ted Tubing		
Start @ 1024 @ 1 gpm Weil Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65										
O.9 (0 1 Case Volume	3 0.27 Other									
Temp Cond. Turbidity Time (°F or °C) pH (mS or (S)) (NTUs) Gals. Removed Observations										
1225	23.1	6.7	2832	,	19	1	00.	ORP -54.5		
1226	23.3	6.7	2938		1 i	ュ	ەد. ب	-67.0		
1227	83.5	6.7	3070		7	73	0.15	-73.4		
								·		
	* Stron	ه م	or-		, .					
Did well de		_)	(40)	Gallon	s actuall	y evacuated:	3			
Sampling I	Date: 12/	10/09	Sampling Tim	e: /2	37	Depth to Wate	r: <u>34.</u> ;	39		
Sample I.D.: MW-11 Laboratory: STS										
Analyzed f	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:									
EB I.D. (if applicable): © Duplicate I.D. (if applicable):										
	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:									
D.O. (if red		re-purge:		^{™2} /1		ost-purge:	_	^{mg} / ₁ ,		
O.R.P. (if 1	reg'd): P	re-purge:		mV	Į P	ost-purge:		mV		

Project #: 03/209 - ZMI	Client:	BlaKe	ely Env						
Sampler: ZM	Date:	12/9/	03	,					
Well I.D.: MW-12	Well D	iameter:	② 3 4	6 8					
Total Well Depth (TD): 46.06	, Depth	to Water ((DTW): <u>34</u> .	30 (35.39)					
Depth to Free Product:	Thickn	ess of Fre	ee Product (fee	:t):					
Referenced to:	Grade D.O. M	leter (if re	eq'd): <	AS 228 HACH					
DTW with 80% Recharge [(Height	of Water Colum	1 x 0.20) -	+ DTW]:	36.65					
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible	Waterra Peristaltic Extraction Pump Other 2" Redi-flo		Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing					
Start @ 1455 @ 3/4gpm		Well Diameter	Multiplier Well I' 0.04 4"	Diameter Multiplier 0.65					
1. \$\frac{1}{\text{Case Volume}}\$ (Gals.) \$\text{ X} \frac{-3}{\text{Specified Volumes}}\$ = \frac{5}{\text{Calculated Volume}}\$ \frac{1}{\text{Calculated Volume}}\$ \frac{2}{3^n} & 0.16 & 6^n & 1.47 \\ \frac{1}{3^n} & 0.37 & \text{Other} & \text{radius}^2 \cdot 0.163									
1 - 1 - 1	i i	oidity							
			Gals. Removed	Observations OG OF					
	1385 21	100	2	0.12 -723					
'	387	18	<u></u>	0.08 -75:					
1501 23.6 7.4 1	3 87	19	6	0.10 -73.0					
Did well dewater? Yes No		· ·	evacuated: (<u> </u>	· 				
Sampling Date: (2/4/63 Sam)	pling Time: (5	[Depth to Water	<u>:: 34.42</u>					
Sample I.D.: MW-12 Laboratory: ST5									
Analyzed for: TPH-G BTEX MTBI		ates (5)	Other:						
EB I.D. (if applicable): Duplicate I.D. (if applicable):									
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:									
D.O. (if req'd): Pre-purge:	mg/I	Po	st-purge:		_{π8} /Γ				
O.R.P. (if req'd): Pre-purge:	mV	Po	st-purge:	<u> </u>	mV				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

and the second s

Project #: 03/209 - 2 MII Client: 13/a K-e/y Env								
Sampler: ZM		Date: /2 /	9/03					
Well I.D.: MW-13		Well Diamete	x: <u>2</u> 3 3 4	6 8				
Total Well Depth (TD): 62.	47	Depth to Water (DTW): 45.12 (12.16/03)						
Depth to Free Product:		Thickness of Free Product (feet):						
Referenced to:	Grade	D.O. Meter (i	f req'd):	(YS) 556	HACH			
DTW with 80% Recharge [(He	ight of Water	Column x 0.2	0) + DTW]: L	18.59	0. 10			
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible	t Extract	Waterra Peristaltic tion Pump Kedi - fk	Sampling Method:	<u>Dispo</u> Extra Dedica	Bailer sable Bailer action Port ated Tubing			
Start @0904 @ 10	pM	Well Diam			ltiplica			
2.7 (Gals.) X 3	- 801	_ Gals. 1" 2" 1" 1" 2" 1" 1" 1"	0.04 4" 0.16 6" 0.37 Othe	0.6 1.4 Tac				
Temp	Cond.	Turbidity						
Time (°F or °C) pH (mS or (S) (NTUs) Gals. Removed Observations								
0907 22.8 6.9	1957	71000 3		D.0. J.⊇/	- 2-8			
0910 229 6.9	1954	857 6		უ. 23	- 5.9			
0912 229 6.9	1953	543	8.5	3.51	-1.1			
Did well dewater? Yes d	<u>র</u> ক্ত	Gallons actua	lly evacuated:	3.5				
Sampling Date: 12/16/03	Sampling Time	e: 0921	Depth to Wate	r: 45	29			
Sample I.D.: NW-13 Laboratory: STS								
Analyzed for: TPH-G BTEX								
EB I.D. (if applicable): @ Duplicate I.D. (if applicable):								
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:								
D.O. (if req'd): Pre-purge:		mg/L	Post-purge:		mg/L			
O.R.P. (if req'd): Pre-purge:		mV	Post-purge:		$^{ m mV}$			

Project #: 03/209	-ZMI	Client: Blakely Env			
Sampler: ZM		Date: /2/9/03			
Well I.D.: MW-14	4	Well Diameter	· ② 3 4	6 8	
Total Well Depth (TD):	: 65.19	Depth to Water	(DTW): 4/6	72/4	12/4/63
Depth to Free Product:	· ·	Thickness of F	ree Product (fee	et):	
Referenced to:	(PVC) Grade	D.O. Meter (if	req'd):	<u> </u>	насн
DTW with 80% Rechar	rge [(Height of Water	Column x 0.20)	+DTW]: 5	0.41	
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Electric Submersible Other 2" Redisflo Other:					sable Bailer action Port
Start@ 1408 @		Well Diamete	r Multiplier Well 0.04 4"	Dismeter Mu 0.6	ltiplier 55
1 Case Volume Specific		Gals. 2"	0.16 6" 0.37 Other	1.4 - rae	17 dřus ² * 0.163
I Case volume Specific	ed voterios Calculator v		<u></u>		
Temp	Cond.	Turbidity			
Time (°F or ©	pH (mS or (LS))	(NTUs)	Gals. Removed		ervations ORP
1411 22.9	7.1 /940	254	3	335 0.0.	-68.2
1414 230	7.1 1964	98	6	329	-61.9
1417 230	7.1 1984	65	9	3-29	-59.4
				•	<u>} </u>
Did well dewater?	Yes (No)	Gallons actuall	y evacuated:	9	
Sampling Date: 19/4	ارم/ Sampling Tin	ne: 14 25	Depth to Wate	r: 46	.75
Sample I.D.: NW-	-14	Laboratory: 3	STS	,	
Analyzed for: TPH-G	BTEX MTBE TPH-D	Oxygenates (5)	Other:		
EB I.D. (if applicable):	@ Time	Duplicate I.D.	(if applicable):	MW-1	@ 1435
Analyzed for: TPH-G	втех мтве трн-р	Oxygenates (5)	Other:		·
D.O. (if req'd): Pro	e-purge:	mg/ <u>y</u> F	ost-purge:	, 	mg/L
O.R.P. (if req'd): Pr	e-purge:	mV I	ost-pwge:		mV

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

While MONITORING DATA SHEE

Project #: 03/209 - ZM	Client: Blakely Env				
Sampler: ZM		Date: 12/9/03			
Well I.D.: MW-15	Well Diamete	Well Diameter: 2 3 4 6 8			
Total Well Depth (TD): 64.	64	Depth to Wate	er (DTW): 46	84 (47.12)	
Depth to Free Product:	•	Thickness of I	Free Product (fe	et):	
Referenced to:	Grade	D.O. Meter (it	req'd):	∰ 556 HACH	
DTW with 80% Recharge [(Hei	ight of Water	Column x 0.20))+DTW]: 5	0.40	
Purge Method: Bailer Waterra Sampling Method: Disposable Bailer Peristaltic Disposable Positive Air Displacement Extraction Pump Extraction Pump Ded Other:					
Start @ 1317 @ 191		Well Diame	0.04 4"	Diameter <u>Multiplier</u> 0.65	
1 Case Volume Specified Volumes	= 8.4 Calculated Vo	Gals. 2"	0.16 6" 0.37 Othe	1,47 r radius ^{2 +} 0,163	
Temp Time (°F or C) pH	Cond. (mS or (S)	Turbidity (NTUs)	Gals. Removed	Observations O.O. ORP	
1320 23.3 7.1	1929	31/	<u> </u>	0.24 -140.6	
1323 234 70	1928	64	6	0.53 -154.6	
1326 23.4 7.0	1927	21	9	0.65 -161.4	
		,			
Did well dewater? Yes	<u></u>	Gallons actual	ly evacuated:	9	
Sampling Date: 12/9/03 S	ampling Time	e: /335	Depth to Wate	r: 47.39	
Sample I.D.: NW-15		Laboratory:	575	· 	
Analyzed for: TPH-G BTEX A	ATBE TPH-D	Oxygenates (5)	Other:		
EB I.D. (if applicable):	@ Time	Duplicate I.D.	(if applicable):		
Analyzed for: TPH-G BTEX N	ATBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req'd): Pre-purge:		^{™8} /L	Post-purge:	ms/L	
O.R.P. (if req'd): Pre-purge:		mV	Post-purge:	mV	

Project #: 03(209 - ZM) Client	Blakely Env			
	Date: /2/9/03			
Well I.D.: MW-16 Well .	Well Diameter: ② 3 4 6 8 Depth to Water (DTW): 36 95			
Total Well Depth (TD): Depth				
Depth to Free Product: 36.08 Thick	ness of Free Product (feet): 0.77			
Referenced to: (PVC) Grade D.O. 1	Meter (if reg'd): YSI HACH			
DTW with 80% Recharge [(Height of Water Colum	ın x 0.20) + DTW]:			
Purge Method: Beiler Waterr Disposable-Bailer Peristalti Positive Air Displacement Extraction Pum Electric Submersible Other	Disposable Bailer Extraction Port Dedicated Tubing			
	Other: Well Diameter Multiplier Well Diameter Multiplier			
(Gals.) X Gals. 1 Case Volume Specified Volumes Calculated Volume	1" 0.04 4" 0.65 2" 0.16 6" 1.47 3" 0.37 Other radius ² * 0.163			
	rbidity ITUs) Gals. Removed Observations			
5PH detected w/	interface probe			
No simple taken				
Did well dewater? Yes No Gallo	ns actually evacuated:			
Sampling Date: Sampling Time:	Depth to Water:			
·	atory:			
Analyzed for: TPH-G BTEX MTBE TPH-D Oxyge	nates (5) Other:			
EB I.D. (if applicable): Dupli	cate I.D. (if applicable):			
	nates (5) Other:			
D.O. (if req'd): Pre-purge:	/L Post-purge: mg/L			
O.R.P. (if req'd): Pre-purge: m	V Post-purge: mV			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

	· · · · · · · · · · · · · · · · · · ·			
Project #: 03/209 - ZMI	Client: Blakely Env			
Sampler: ZM	Date: /2/9/03			
Well I.D.: MW-17	Well Diameter: 2 3 4	6 8		
Total Well Depth (TD): 66.47	Depth to Water (DTW): 4/3,4	47 (43.84)		
Depth to Free Product:	Thickness of Free Product (feet	t):		
Referenced to: (V) Grade	D.O. Meter (if req'd):	YS)556 HACH		
DTW with 80% Recharge [(Height of Wate	r Column x 0.20) + DTW]:	18.07		
	Waterra Sampling Method: Peristaltic ction Pump Redi-+lo Other:	Bailer <u>Disposable Bailer</u> Extraction Port Dedicated Tubing		
Start @ 1110 @ 1 apm	Well Diameter Multiplier Well D	ismeter Multiplier		
3.6 (Gals.) X 3 - 10.8	1* 0.04 4" 0.16 6"	0.65 1.47		
1 Case Volume Specified Volumes Calculated V	—— 11 oz A 27 /www.	radius ² * 0.163		
Temp Cond. Time (°F or ©) pH (mS or pS)	Turbidity (NTUs) Gals. Removed	Observations		
1114 23.3 7.1 1984	454 4	3.12 742		
1118 234 71 1981	82 8	3.14 71.7		
1121 23.4 7.1 1981	35 11	3.21 70.5		
	· ·			
Did well dewater? Yes 🔞	Gallons actually evacuated:			
Sampling Date: 12/9/03 Sampling Ti	ne: /13/ Depth to Water	: 47.93		
Sample I.D.: MW-17	Laboratory: STS			
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5) Other:			
EB I.D. (if applicable): @	Duplicate I.D. (if applicable):			
Analyzed for: TPH-G BTEX MTBE TPH-D				
D.O. (if req'd): Pre-purge:	^{mg} / _L Post-purge:	^{mg} / _L		
O.R.P. (if req'd): Pre-purge:	mV Post-purge:	mV		

Project #: 031209 - ZMI	Client: Blakely Env			
Sampler: ZM	Date: /2/9/03			
Well I.D.: MW-1.8	Well Diameter: 2 3 4	6 8		
Total Well Depth (TD): 46.17	Depth to Water (DTW): 42.	73 (42-75)		
Depth to Free Product:	Thickness of Free Product (fee	;t):		
Referenced to: PVC Grade	D.O. Meter (if req'd):	₹\$155°G насн		
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]: 4	1341		
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Other Start 106 @ ### 0 pm	Waterra Sampling Method: Peristaltic ction Pump Ledi-Flo Other:	Bailer Disposable Hailer Extraction Port Dedicated Tubing		
2 11 10	1" 0.04 4"	Diameter Multiplier 0.65		
1 Case Volume Specified Volumes Calculated V	Gals. 2" 0.16 6" 0.17 Other	1,47 radius ² * 0.163		
Temp Cond. Time (°F or °C) pH (mS or µS)	Turbidity (NTUs) Gals. Removed	Observations		
1107 237 64 2664	800 .5	0.39 -66-8		
1109 23.9 6.3 2674	237 1.0	6.34 -73.7		
1111 240 6.4 2674	230 1-5	0,32 -77-9		
+ Strong ador				
Did well dewater? Yes No	·	.5		
Sampling Date: 12/16/63 Sampling Tir	ne: 1125 Depth to Water	r: 43.41		
Sample I.D.: MW-18	Laboratory: STS	·		
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5) Other:			
EB I.D. (if applicable):	Duplicate I.D. (if applicable):			
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5) Other:			
D.O. (if req'd): Pre-purge:	^{mg} / _L Post-purge:	mg/L		
O.R.P. (if req'd): Pre-purge:	mV Post-purge:	mV		

Project #: 03/209 - ZMI	Client: Blakely Env
Sampler: ZM	Date: 12/9/03
Well I.D.: NW-19	Well Diameter: 3 4 6 8
Total Well Depth (TD):	Depth to Water (DTW): 38.65
Depth to Free Product: 34.06	Thickness of Free Product (feet): 4.65
Referenced to:	D.O. Meter (if req'd): YSI HACH
DTW with 80% Recharge [(Height of W	Vater Column x 0.20) + DTW]:
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Othe	Waterra Sampling-Method: Bailer Peristaltic Disposable Bailer Extraction Pump Extraction Port Deflicated Tubing Other:
	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65
(Gals.) X = Calcular Case Volumes Calcular	Gals. 2" 0.16 6" 1.47 tted Volume 3" 0.37 Other radius ² * 0.163
Temp Cond. Time (°F or °C) pH (mS or p	Turbidity
- No sample	e taken —
Did well dewater? Yes No	Gallons actually eyacuated:
Sampling Date: Sampling	· · · · · · · · · · · · · · · · · · ·
Sample I.D.:	Laboratory:
Analyzed for: TPH-G BTEX MTBE TP	TH-D Oxygenetes (5) Other:
EB I.D. (if applicable):	Duplicate I.D. (if applicable):
	H-D Oxygenates (5) Other:
D.O. (if req'd): Pre-purge:	mg/L Post-purges mg/L
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV

_									
Project #: 03/209 - ZMI			Client: Blakely Env						
Sampler: ZM				Date: /2/9/03					
Well I.D.: MW-20				Well Di	ameter:	② 3 4	6 8		
	Total Well I	epth (TD)): 67	60	Depth to	o Water	(DTW): 44.	53 (44	19/83 164
I	Depth to Fre	e Product:			Thickne	ss of F	ree Product (fee	et):	
]	Referenced t	:0:	€V)	Grade	D.O. M	eter (if	req'd): (YS)) 556	HACH
į	DTW with 8	0% Recha	rge [(H	eight of Water	Column	x 0.20)	+ DTW]: 4	19.14	<u>.</u>
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other 2" Nedi Ffe					Vell Diamete		Ospos Extra Dedica	Bailer Sable Bailer section Port sted Tubing	
, [S.6 (G	one.) v	3 ied Volum	es Calculated Vo	_ Gals. lume _	1" 2" 3"	0.04 4" 0.16 6* 0.37 Other	0,6 1.4 7ac	- 1
	Time	Temp (°F or 🖒	рН	Cond. · (mS or µS)	Turbi (NT	-	Gals. Removed		ervations
<u>`</u>	1205	23.2	6.9	2206	53	3	v 24	D.0 258	0RP 67.0
	1209	233	6-9	2198	24	11	.8	2.66	62.2
	1212	23.3	70	2192	9	95	11	3.00	58.6
1	,								
1	Did well de	water?	Yes (No.	Gallons	actuall	y evacuated:	11	
}	Sampling D	ate: 12/9/0	3	Sampling Time	e: /22	7.J.	Depth to Water	: 44.	80
	Sample I.D.: MW-20			Laborat	ory: <	= 7 S			
	Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other:		
	EB I.D. (if	applicable)):	@ Time	Duplicate I.D. (if applicable):				
j	Analyzed fo	or: трн-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other:		
	D.O. (if req	'd): P	re-purge:		mg/L	P	ost-purge:		™¥/L
′	O.R.P. (if re	eq'd): P	те-ршде:		mV	P	ost-purge:		m∇

<u></u>					C1: /	21 1/	1 7		
			Client: Blakely Env						
Sampler: ZM			Date: /2 /9/03						
W	ell I.D.:	MW-	<u> </u>		Well Dia	meter:	<u> 3</u> 3 4	68_	-
T	otal Well D	epth (TD)	<u> ح</u> ک	3.25	Depth to	Water	(DTW): 45.	44 <u>(</u>	45.84)
D	epth to Fre	e Product:	•		Thicknes	s of Fr	ee Product (fee	<u>t):</u>	
R	eferenced t	o:	(PVC)	Grade	D.O. Me	ter (if i	req'd):	™ 55 €	HACH
D	TW with 8	0% Recha	rge [(He	eight of Water	Column 2	x 0.20)	+ DTW]: 4	19.00	
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other 2 * Ledi-Flo Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65					able Bailed ction Port ted Tubing				
	2.8 (G	als.) X	3 Ted Volum	es Calculated Vo	Gals.	2" 3"	0.16 6" 0.37 Other	1.43	•
	Case volume	Specif	150 AOIOO	es Caldinated_vo.	TUMO 1		· -		
	Time	Temp (For (C)	Нq	Cond. (mS or 🔇	Turbio (NTC	- 1	Gals. Removed	· Obse	rvations
! -	1027	22.8	6.9	1905	36		3	p.o 1.48	0.4
	(030	229	6.8	1880	フ	5	6	p.34	-7-0
<u> </u>	1032	22.9	6-8	1868	6	50	8.5	2.54	-7.5
}				<u> </u>					
,								ï	
! <u>-</u>	Did well de	water?	Yes (N ₀	Gallons	actuall	y evacuated:	85	
	Sampling I	Date: 12/	16/63	Sampling Tim	e: /04	0	Depth to Water	r: 46.	30
	Sample I.D	. Mw	-21		Laborate	ory:	575		
	Analyzed f	or: TPH-G	BTEX	мтве трн-D	Oxygenat	es (5)	Other:	·	
}	EB I.D. (if	applicable):	@ Time	Duplicat	te I.D.	(if applicable):	MW-2	@ /aSO
, [Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygenat	es (5)	Other:		
	D.O. (if rec	ı'd): P	re-purge:		mg/L		ost-purge:		
'	O.R.P. (if r	eq'd): P	re-purge:		mV	P	ost-purge:	,,, <u>,</u>	mV

Project #: 03/209 - ZMI	Client: Blakely Env			
	Date: /2/9/03			
Well I.D.: MW-22	Well Diameter: 2 3 4 6 8			
Total Well Depth (TD): 40.15	Depth to Water (DTW): Pry			
Depth to Free Product:	Thickness of Free Product (feet):			
Referenced to: EVC Grade	D.O. Meter (if req'd): YSI HACH			
DTW with 80% Recharge [(Height of Water (Column x 0.20) + DTW]:			
	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer on Pump Extraction Port Dedicated Tubing Other: Well Dismeter Multiplier Well Dissocier Multiplier			
(Gals.) X = Calculated Volumes Calculated Volumes	Gals, 3" 0.37 Other radius + 0.163			
Temp Cond. Time (For °C) pH (mS or µS)	Turbidity (NTUs) Gals. Removed Observations			
No Sample	taken -			
	Gallons actually evacuated:			
Sampling Date: Sampling Time	: Depth to Water:			
Sample I.D.:	Laboratory:			
	Oxygenates (5) Other:			
EB I.D. (if applicable): @ Time	Duplicate I.D. (if applicable):			
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5) Other:			
D.O. (if req'd): Pre-purge:	mg/L Post-purges mg/L			
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV			

Project #: 03/209 - ZMI Client: B1	akely Env
Sampler: ZM Date: /2	19/03
Well I.D.: MW-23 Well Diam	eter: 2 3 🕏 6 8
Total Well Depth (TD): Depth to W	Vater (DTW): 4/2.65
Depth to Free Product: Thickness	of Free Product (feet):
Referenced to: FVO Grade D.O. Meter	r (if req'd): YSI HACH
DTW with 80% Recharge [(Height of Water Column x 0).20) + DTW]:
Purge Method: Bailer Waterra Disposable Batter Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other	Sampling Method: Bailer Disposable Bailer Extraction Port Dedicated Tubing Other:
11	
(Gals.) X = Gals. 2'	·
Temp Cond. Turbidity Time (°F or °C) pH (mS or μS) (NTUs)	
- No sample take	
Var	
Did well dewater? Yes No Gallons ac	tually evacuated:
Sampling Date: Sampling Time:	Depth to Water:
Sample I.D.: Laboratory	y:
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates	(5) Other:
EB I.D. (if applicable): @ Time Duplicate	I.D. (if applicable):
Analyzed for: TPH-G BTEX MTER TPH-D Oxygenates	(5) Other:
D.O. (if req'd): Pre-purge:	Post-purge: mg/L
O.R.P. (if req'd): Pre-purge: mV	Post-purge: mV

Project #: 03/209 - ZMI	Client: Blakely Env			
Sampler: ZM	Date: /2/9/03			
Well I.D.: MW-24	Well Diameter: 2 3 4 6 8			
Total Well Depth (TD):	Depth to Water (DTW): 45.69			
Depth to Free Product:	Thickness of Free Product (feet):			
Referenced to: OVO Grade	D.O. Meter (if req'd): YSI HACH			
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]:			
Purge Method: Bailer Disposable Bailer Positive Air Displacement Extrac Electric Submersible Other	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer tion Pump Extraction Port Dedicated Tubing Other:			
	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65			
(Gals.) X = Calculated Volumes	Gals. 2" 0.16 6" 1.47 3" 0.37 Other radius ² * 0.163			
I Case volume Specifica volumes Carculated vol	<u></u>			
Temp Cond. Time (°F or °C) pH (mS or μS)	Turbidity (NTUs) Gals. Removed Observations			
Gauge only				
Gaw & bicty				
No sample	taken -			
Did well dewater? Yes No	Gallons actually evacuated:			
Sampling Date: Sampling Time	e: Depth to Water:			
Sample I.D.:	Daboratory:			
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5) Other:			
EB I.D. (if applicable):	Duplicate I.D. (if applicable):			
Analyzed for: TPH-G BTEX MTRE TPH-D	Oxygenates (5) Other:			
D.O. (if req'd): Pre-purge:	mg/L Post-purge: mg/L			
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV			

Project #: 02/100 72/	Client: Ala V. I. Zin				
	Client: Blakely Env Date: 12/9/03				
"					
	Well Diameter: 2 3 4 6 8				
Total Well Depth (TD):	Depth to Water (DTW): 47.35				
	Thickness of Free Product (feet):				
Referenced to: PVC Grade	D.O. Meter (if req'd): YSI HACH				
DTW with 80% Recharge [(Height of Water 0	Column x 0.20) + DTW]:				
	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer on Pump Extraction Port Dedicated Tribing Other:				
1	Well Diameter Multiplier Well Diameter Multiplier				
	Gala, 2" 0.16 6" 1.47				
1 Case Volume Specified Volumes Calculated Vol	ume 3 0.3. Chia isans 0,103				
Temp Cond. Time (F or °C) pH (mS or μS)	Turbidity (NTUs) Gals. Removed Observations				
Grange only	7				
- No Sample	taken -				
Did well dewater? Yes No	Gallons actually evacuated:				
Sampling Date: Sampling Time	Depth to Water:				
Sample I.D.:	Laboratory:				
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:					
EB I.D. (if applicable):	Duplicate I.D. (iXapplicable):				
Analyzed for: TPH-G BTEX MTBE RPH-D	Oxygenates (5) Other:				
D.O. (if req'd): Pre-purge:	mg/L Post-purge: mg/L				
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

and the second of the second o

Project #: 03/209 - ZMI CI	ient: Blakely Env							
	ite: /2/9/03							
Well I.D.: MW-26 W	Well Diameter: ② 3 4 6 8							
Total Well Depth (TD): 39.75 De	Depth to Water (DTW): 39-60							
Depth to Free Product:	Thickness of Free Product (feet):							
Referenced to: Évè Grade D.	O. Meter (if req'd): YSI HACH							
DTW with 80% Recharge [(Height of Water Co	lumn x 0.20) + DTW]:							
} = u	Other:							
	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65							
Gals.) X = Gals.) X = Gals.) X Case Volume Specified Volumes Calculated Volumes Calculated Volumes Gals.)	lls. 2° 0.16 6" 1,47 3" 0.37 Other radius ² * 0.163							
Temp Cond. Time (°F or °C) pH (mS or µS) The No Sample	Turbidity (NTUs) Gals. Removed Observations To Sample Taken							
Did well dewater? Yes No G	allons actually evacuated:							
Sampling Date: Sampling Time:	Depth to Water:							
1	aboratory:							
	xygenates (5) Other:							
<u></u>	uplicate ND: (if applicable):							
	xygenates (5): Other:							
D.O. (if req'd): Pre-purge:	mg/L Post-purge: mg/L							
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV							

B

SOUTHLAND TECHNICAL SERVICES, INC.

CHAIN OF CUSTODY RECORD

Lab Job Number __

Cilent: Blakely Exp	vironmental	Tow		tions.		<u> </u>		-			Ana	lyses	Req	ueste	d		•		T.A.T. Requested □ Rush 8 12 24 ho
Address 4359 Ph	elan Road	, Phe	lau,C	A 92	37/		(TBE)	!			зтех)	ıfim.)	T SST	ŧ.	भू हो	J. L.Co.			☐ 2-3 days ☐ Non Sample Condition
Report Attention Hiram Garala	Phone TeO 869 8572 Project Site	Fax 76086	8 8573	Sampled by Zach	(BTS	<u> </u>	втех,мтве)	oline)	sel)	Cs)	8260B (Oxygenates, BTEX)	8260B (MTBE Confirm.)	ر تر با	V9	NATTAKE, ALLESIMAN	Ferrans Iron, Matal Iron	Carbonate, Bicarbonate	å Se	☐ Chilled ☐ Intact☐ Sample scals
Angeles	Angeles Chen	ucal C	6. 89.	(2 20Re	hsen M	No.,type*	1 ~	8015M (Gasoline)	8015M (Diesel)	\$260B (VOCs)	(Oxyg	3 (MT	τος,	17 ()	ate,	J. SA	17 6 6 4 8 4	10	Remarks
Client Sample ID	Lab Sample ID	Date	Time	Matrix Type	Sample Preserve			8015N	8015N	309Z8	8260E	8260	<u>ک</u> کا	Chlos S. L.	₩/	Fred		ž	
<u> </u>	312074-}	12-9-03	11:31	water	HC2 H250+	3V 1-260P 1-500NLG		K		X			X	X	X	人	<u>×</u>	×	
WW-20	-6		12:22					X		X			X	쏫	X	X	×	X	
NW-15	-4	 	13:35		-			X		X			メメ	<u> </u>	X	슟	文	<u>x</u>	
nw-14			14:25	 	_V HCPL	3V	-	K		×						 		<u> </u>	
MW-1	-1 - 2	 -	14:35 15:11		HCE Herror	3V 1.2Am/	 	K		1		·* .	Ł	×	×	×	X	X	
MW-12 TB	-7	 	08 00 a	V	1324	2V				X				<u> </u>		<u> </u>		ļ	
						<u> </u>	ļ <u>.</u>				<u> </u>		-	-			-		
			ļ	ļ		 	ļ	<u> </u>			<u> </u>		-	-		-	-	-	
				<u> </u>		<u> </u>			-		_			-		ļ			
		 			<u> </u>													_	
	<u></u>	 												<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
				ļ	<u> </u>	·		 	<u> </u>	_		 		 	_	 	 	 	
		-			<u></u>	<u> </u>	┼-	├-	 -	 -	<u> </u>	-	_	-		十	 	 	
telinguished by Wunder S Bro	Corr	ipany E//	<u></u>	Date 2-9-03	Time 1615	Repaired by	<u></u>	<u> </u>	<u> </u>	<u> </u>		1 1 pany 1 7 5	<u> </u>	! =		A≖A	ainer t ir Bag lass be	;	M=Metal Tube P=Plastic bottle V=VOA vial
Relinquished by	Con	ipany		Date	Time	Received by			<u> </u>	· davi		pany r resi	ilts ar	e rênd	orted				ngements are

Southland Tech. Services, Inc.

7801 Telegraph Road, Suite L & K Montebello, CA 90640

(323) 888-0728 Tel:

made. Hazardous samples will be returned to client or disposed of at client's expense. Distribution: WHITE with report, PINK to courier.

(323) 888-1509 Fax:

Environmental Laboratories

12-29-2003

Mr. Hiram Garcia Blakely Environmental Investigations, Inc. 4359 Phelan Road Phelan, CA 92371

Project:

Angeles Chemical Co.

Project Site:

8915 Sorensen Ave., Santa Fe Springs, CA

Sample Date:

12-09-2003

Lab Job No.:

BL312074

Dear Mr. Garcia:

Enclosed please find the analytical report for the sample(s) received by STS Environmental Laboratories on 12-09-2003 and analyzed for the following parameters:

EPA 8015M (Gasoline)

EPA 8260B (VOCs by GC/MS)

EPA 160.1 (Total Dissolved Solids)

EPA 352,1 (Nitrate)

EPA 325.3 (Chloride)

EPA 375.4 (Sulfate)

EPA 376.1 (Sulfide)

EPA 7380 (Total Iron)

Ferrous Iron

EPA 7460 (Manganese)

EPA 310.1 (Alkalinity)

Standard Method 4500 (Carbonate & Bicarbonate)

EPA 415.1 (Total Organic Carbon, Dissolved Organic Carbon)

The sample(s) arrived in good conditions (i.e., chilled, intact) and with a chain of custody record attached.

Chloride, sulfide, Alkalinity, TDS, Carbonate & Bicarbonate analyses were subcontracted to Americhem Testing Laboratory. TOC & DOC analyses were subcontracted to Associated Laboratories. Their original reports are attached.

STS Environmental Laboratory is certified by CA DHS (Certificate Number 1986). Thank you for giving us the opportunity to serve you. Please feel free to call me at (323) 888-0728 if our laboratory can be of further service to you.

Sincerely,

Roger Wang, Ph. D. Laboratory Director

Enclosures

This cover letter is an integral part of this analytical report.

Environmental Laboratories

12-29-2003

Client:

Blakely Environmental Investigations, Inc.

Lab Job No.:

BL312074

Project:

blakery Environmental investig

Angeles Chemical Co.

240 000 11011

DL3140/7

Project Site:

8915 Sorensen Ave., Santa Fe Springs, CA

Date Sampled:

12-09-2003

Matrix:

Water

Date Received:

12-09-2003

Analytical Test Results

Analyte	EPA Method	Date Analyzed	Reporting Unit	MW-12	MW-14	MW-15	MW-17	MW-20	Reporting Limit
Nitrate	352.I	12-10-03	mg/L	1.16	20.9	25.2	20.1	21.4	0.01
Sulfate	375.4	12-10-03	mg/L	47	399	287	387	501	1,0
Total Iron	7380	12-10-03	mg/L	3.65	0.14	0.38	0.36	0.24	0.1
Ferrous Iron	Colori- metry	12-10-03	mg/L	0.73	0.21	0.21	0.22	0.14	0.05

ND: Not Detected (at the specified limit).

Environmental Laboratories

Client: Blakely Environmental Investigations, Inc.

Project:Angeles Chemical Co.

Lab Job No.: BL312074

Matrix: Water

Date Reported: 12-29-2003

Date Sampled: 12-09-2003

EPA 8260B (VOCs by GC/MS, Page 1 of 2) Reporting Unit: ppb

ll .			12-11		12-11-03	12-11-03	12-11-03		
DILUTIO	N FAC	CTOR		2.5	2.5	2	2.5		
LARS	AMPL	EID		BL312074	BL312074	BL312074	BL312074		
				-1	-2	-3	4		
CLIENT S				MW-01"	MW-12	MW-14	MW-15		
COMPOUND	MDL	PQL	MB						
Dichlorodifluoromethane	2	5	ND	ND	ND	ND	ND		
Chloromethane	2	5	ND	ND	ND	ND	ND		
Vinyl Chloride	2	2	ND	5.5j	13.1	6.1	134		
Bromomethane	2	5	ND	ND	ЙĎ	ND	ND		
Chloroethane	2	5	ND	ND	ND	ND	ND	_	
Trichlorofluoromethane	2	5	ND	ďИ	ND	ND	ND		_
1,1-Dichloroethene	2	5	ND	700	7.3j	675	234		
lodomethane	2	5	ND	ND	ND	ND	ND	_	
Methylene Chloride	2	5	ND	ND	ND	ND	ND		
trans-1,2-Dichloroethene	2	5	ND	ND	ND	ND	ЙĎ		
I, I-Dichloroethane	2	5	ND	230	735	219	262		_
2,2-Dichloropropane	2	5	ИD	ND	מא	ND	ND		
cis-1,2-Dichloroethene	2	5	ND	130	5.1j	113	1,570	_	_
Bromochloromethane	2	5	ND	ND	ND	ND	ND		
Chloroform	2	5	ND	ND	ND	ND	ND		
1,2-Dichloroethane	2	5	ND	11.2j	ND.	9.2j	ИD		
I, I, I-Trichloroethane	2	5	ND	ND	10.7j	ND	ND		_
Carbon tetrachloride	2	5	ND	ND	ND	ND	ND		
1,1-Dichloropropene	2	5	ND	ND	ND	ND	ND		
Benzenc	1	1	ND	12.5	9.1	14.6	12.9		
Trichloroethene	2	2	ND	20.3	ИD	22.6	9.3		
1,2-Dichloropropane	2	5	ND	ND	ND	ND	ND		
Bromodichloromethane	2	5	ND	ND	ND	ND	ДИ		
Dibromomethane	2	5	ND	ND	ND	ND	ND		
trans-1,3-Dichloropropene	2	5	מע	ND	ND	ND	ND		
cis-1,3-Dichloropropene	2	5	ND	ND	ND	МD	ND		····
1,1,2-Trichloroethane	2	5	ND	ND	ND	ND	ИD		
1,3-Dichloropropane	2	5	ND	ND	ND	ND	ND		
Dibromochloromethane	2	5	ND	ND	ND	ND	ДИ		
2-Chloroethylvinyl ether	2	5	ND	ND	ND	ND	ND		,,
Bromoform	2	5	ND	ND	ND	ND	ND		
Isopropylbenzene	2	5	ND	ND	42.2	ND	ND		
Bromobenzene	2	5	ND	ND	ND	ND	ND		

Environmental Laboratories

Client: Blakely Environmental Investigations, Inc.

Project:Angeles Chemical Co.

Lab Job No.: BL312074

Matrix: Water

Date Reported: 12-29-2003

Date Sampled: 12-09-2003

EPA 8260B (VOCs by GC/MS, Page 2 of 2) Reporting Unit: (ppb)

COMPOUND	MDL	PQL	MUB	MW-01	MW-12	MW-14	MW-15		
Toluene	1	1	ИD	ND	9.7	ND	3.2		
Tetrachloroethene	2	2	מא	40.2	3.8j	42.4	12.1		
1,2-Dibromoethane(EDB)	2	5	ND	ND	ND	ND	ΝĎ		
Chlorobenzene	2	5	ND	ИĎ	5.2j	ΩΝ	סא		
1,1,1,2-Tetrachloroethan	2	5	ND	ND	ND	ИĎ	ND		
Ethylbenzene	1	1	ND	ND	157	ND	ND		
Total Xylenes	1	1	ND	ИD	157	ND	ND	[
Styrene	2	5	ND	מא	ND	ND	ND	·	
1,1,2,2-Tetrachloroethan	2	5	ND	ЙЙ	ND	ND	ND		
1,2,3-Trichloropropane	2	5	ND	ЙĎ	ND	ND	ND		
n-Propylbenzene	2	5	ND	ND	123	ND	ND		
2-Chlorotoluene	2	5	ND	ДИ	ND	ND	ND		
4-Chlorotoluene	2	5	ND	ND	ND	ND	ND		
1,3,5-Trimethylbenzene	2	5	ND	ND	294	ND	ND		
tert-Butylbenzene	2	5	ND	ND	МD	ND	dи		
1,2,4-Trimethylbenzene	2	5	ND	ND	498	מא	ND		
Sec-Butylbenzene	2	5	ND	ND	ИĎ	ИĎ	ND		
1,3-Dichlorobenzene	2	. 3	ND	ND	ND	ND	ND		
p-Isopropyltoluene	2	5	ND	ИĎ	ND	ND	ND		
1,4-Dichlorobenzene	2	5	ND	ND	ND	, ND	ND		
1,2-Dichlorobenzene	2	5	ND	ďИ	ND	ND	ND		
n-Butylbenzene	2	5	ND	ND	22.3	ND	ND		
1,2,4-Trichlorobenzene	2	5	ND	ďИ	ND	ND	ND -		
1,2-Dibromo-3- Chloropropane	2	5	ND	ND	ND	ND	ND		
Hexachlorobutadiene	2	5	ND	ND	ND	ND	ND -	 	
Naphthalene	2	5	ND	ND	113	ND	ND -		
1,2,3-Trichlorobenzene	2	5	ND	ND	ND	ND	ND		
Acetone	3	25	ND	I ND	ND	ND	ND ND		
2-Butanone (MEK)	5	25	ND	ND	ND	ND	ND -	ļ	
Carbon disulfide	5	25	ND	ND	ND ND	ND ND	ND	 	
4-Methyl-2-pentanone	5	25	ND	ND	ND ND	ND	ND -	}	<u> </u>
2-Hexanone	5	25	ND	ND	ND ND	ND	ND	 	
Vinyl Acetate	5	25	ND ND	ND	ND	ND ND	ND	 	
1.4-Dioxane	50	100	ND	ND ND	+ ND	ND	ND	 	
MTBE	2	100	ND	ND	ND	ND ON	ND	 	
ETBE	2	2	ND	ND	ND	ND	ND	 	
DIPE	2	2	ND	ND ND	ND	D D	ND -	+	
TAME	2	2	ND	ND ND	ND	ND	ND -	 	
T-Butyl Alcohol	10	10	ND	ND ND	ND	ND	ND ND	 	
1-Butyl Alconol	10	10	ND	מא	מא	חאַ	חאד		

MDL=Method Detection Litnit; MB=Method Blank; ND=Not Detected (below DF × MDL), j=trace concentration.

Environmental Laboratories

Client: Blakely Environmental Investigations, Inc.

Project:Angeles Chemical Co.

Lab Job No.: BL312074

Matrix: Water

Date Reported: 12-29-2003

Date Sampled: 12-09-2003

EPA 8260B (VOCs by GC/MS, Page 1 of 2) Reporting Unit: ppb

DATE A			12-11	12-11-03	12-11-03	12-11-03		<u> </u>	
DILUTE	N FA	CTOR		1	1	1			
LAB S	AMPT	r in		BL312074	BL312074	BL312074		 	}
•		i		-5	-6	-7			
CLIENT SAMPLE LD.				MW-17	MW-20	TB			
COMPOUND	MDL	PQL	MB					<u> </u>	
Dichlorodifluoromethane	2	5	NĎ	ND	ND	NĎ	-		
Chloromethane	2	5	ND	ND	ND .	ND			1
Vinyl Chloride	2	2	ДŊ	ND	ND	ND			
Bromomethane	2	5	NĎ	ND	ND	ND			
Chloroethane	2	5	ND	ND	ND	ND			•
Trichlorofluoromethane	2	5	ND	ND	ND	ND			+
1,1-Dichloroethene	2	5	ND	7.8	43.8	ND		- 	
Iodomethane	2	5	ИĎ	ND	ND	ND			
Methylene Chloride	2	5	ND	ND	ND	ND			
trans-1,2-Dichloroethene	2	5	ND	ND	ДN	ND			
1,1-Dichloroethane	2	5	ND	ND	123	ND			
2,2-Dichloropropane	2	5	ND	ND	ND	ND			<u> </u>
cis-1,2-Dichloroethene	2	5	ND	ND	26.7	ND			
Bromochloromethane	2	5	ND	ND	ND	ND	<u> </u>		
Chloroform	2	5	ND	ND	ND	ND		1	
1,2-Dichloroethane	2	5	ND	ND	МD	ND		†	
1,1,1-Trichloroethane	2	5	ND	2.2j	81.7	ND		1	
Carbon tetrachloride	·2	5	ND	ND	ND	ND	<u> </u>	<u> </u>	
1,1-Dichloropropene	2	5	ND	ND	ND	ND		†	-
Benzene	1	1	ND	ND	1.3	ND		†	-
Trichloroethene	2	2	ND	7.3	4.4	ND		 	-
1,2-Dichloropropane	2	5	ND	·ND	ИD	ND		 	· · · · · · · · · · · · · · · · · · ·
Bromodichloromethane	2	5	ND	ND	ND	ND		<u> </u>	
Dibromomethane	2	5	ND	ND	ND	ND		<u> </u>	<u> </u>
trans-1,3-Dichloropropene	2	5	ND	ИD	ND	ND		<u> </u>	-
cis-1,3-Dichloropropene	2	5	ND	ND	ND	ND		T	-
1,1,2-Trichloroethane	2	5	ND	מא	ND	ND		1	
1,3-Dichloropropane	2	5	ND	ND	QИ	ND			
Dibromochloromethane	2	5	ND	ND	ND	ND			
2-Chloroethylvinyl ether	2	5	ND	ND	ND	ND	_	- -	<u> </u>
Bromoform	2	5	ND	ND	מא	ND		 	
Isopropylbenzene	2	5	ND	ND	ND	ND		\vdash	
Bromobenzene	2	5	NĎ	ND	ND	ND		- 	

Environmental Laboratories

Client: Blakely Environmental Investigations, Inc.

Project:Angeles Chemical Co.

Lab Job No.: BL312074

Matrix: Water

Date Reported: 12-29-2003

Date Sampled: 12-09-2003

EPA 8260B (VOCs by GC/MS, Page 2 of 2) Reporting Unit: (ppb)

COMPOUND	MDL	PQL	МВ	MW-17	MW-20	TB			
Toluene	1	1	ND	ND	14.6	ND			+
Tetrachloroethene	2	2	ND	18.0	3.4j	ND		 	-
1,2-Dibromoethane(EDB)	2	5	ND	ND	ND	ND		 	
Chlorobenzene	2	5	ND	ND	ND	ND		 	
I,1,1,2-Tetrachloroethan	2	5	ND	ND	ND	ND		 	1
Ethylbenzene	1 ·	1	ND	ND	ND	ND		_	
Total Xylenes	1	ī	ND	ND	22.0	ДИ			"
Styrene	2	5	ND	ND	ND	ND			
1,1,2,2-Tetrachloroethan	2	5	ND	ND	ND	ND		<u> </u>	-
1,2,3-Trichloropropane	2	5	ND	ND	ND	מא	,	-	<u> </u>
n-Propylbenzene	2	5	ND	ND	22.9	מא	•	-	
2-Chlorotoluene	2	5	ND	ND	ND	ND			·
4-Chlorotoluene	2	5	ND	ND	ND	ND		<u> </u>	
1,3,5-Trimethylbenzene	2	3	ND	ND	13.8	ND			
tert-Butylbenzene	2	5	ND	ДИ	ND	ЙD		·-	1
1,2,4-Trimethylbenzene	2	5	ND	ND	33,1	ND			
Sec-Butylbenzene	2	3	ND	ND	ND	ND			
1,3-Dichlorobenzene	2	3	ND	ND	ND	ND			1
p-Isopropyitoluene	2	5	ND	ND	ND	ND			
I,4-Dichlorobenzene	2	5	ND	ND	ND	ND			
1,2-Dichlorobenzene	2	- 3	ND	ND	ND	ND			
n-Butylbenzene	2	5	ND	ND	2.1j	ND			
1,2,4-Trichlorobenzene	2	5	ND	ďИ	מֿא	ND		<u> </u>	
1,2-Dibromo-3-	2	5	ND	ND	ND	מא			·
Chloropropane] *				145	ן עאַ		ł	
Hexachlorobutadiene	2	5	ND	ND	ND	מא			
Naphthalene	2	5	ďИ	ND	ND	ИĎ			
1,2,3-Trichlorobenzene	2	5	ND	ИD	ND	ND			
Acetone	5	25	ND	ND	ND	ND			
2-Butanone (MEK)	5	25	ND	ND	ND	ND		- -	
Carbon disulfide	5	25	ND	ND	ND	ND			
4-Methyl-2-pentanone	5	25	ND	ND	ND	ND		1	
2-Hexanone	5	25	ND	ND	ИD	ND			
Vinyl Acetate	5	25	ND	ND	ND	ND "			
1,4-Dioxane	50	100	ND	ND	ND	ND	 	- 	··
MTBE	2	2	ND	ND	ND	ND	<u> </u>		<u>``</u>
ETBE	2	2	ND	ND	ND	ND	 	 -	
DIPE	2	2	ND	"ND	מא	ND	t		
TAME	2	2	ND	ND	ND	ND	 		1.
T-Butyl Alcohol	10	10	ND	ND	ND	ND			1

MDL=Method Detection Limit; MB=Method Blank; ND=Not Detected (below DF × MDL), j=trace concentration.

Environmental Laboratories

12-29-2003

Client:

Blakely Environmental Investigations, Inc.

Lab Job No.:

BL312074

Project:

Angeles Chemical Co.

Date Sampled:

12-09-2003

Project Site:

8915 Sorensen Ave, Santa Fe Springs

Matrix:

Water

Date Received:

12-09-2003

Batch No.:

CL10-GW1

Date Analyzed:

12-10-2003

Phone: (323) 888-0728 Fax: (323) 888-1509

EPA 8015M (Gasoline) Reporting Units: µg/L (ppb)

Sample ID	Lab ID	Gasoline (C4-C12)	Method Detection Limit	PQL
Method Blank		ND	50	50
MW-1	BL312074-1	609	50	50
MW-12	BL312074-2	5,390	50	50
MW-14	BL312074-3	521	50	50
MW-15	BL312074-4	790	50	50
MW-17	BL312074-5	ND	50	50
MW-20	BL312074-6	1,080	50	50
ТВ	BL312074-7	ND	50	50

ND: Not Detected (at the specified limit)

Southland Technical Services, Inc. Environmental Laboratories

12-29-2003

EPA 8015M (TPH) Batch QA/QC Report

Client:

Blakely Environmental Investigations, Inc.

Lab Job No.:

BL312074

Project:

Angeles Chemical Co.

Lab Sample ID:

R312069-1

Matrix: Batch No.: Water CL10-GW1

Date Analyzed:

12-10-2003

Phone: (323) 888-0728 Fax: (323) 888-1509

L MS/MSD Report Unit: ppb

Analyte	Sample Conc.	Spike Conc.	MS	M\$D	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept, Limit	%Rec Accept. Limit
TPH-g	ND	1,000	1,080	1,130	108.0	113.0	4.5	30	70-130

IL LCS Result Unit: ppb

Analyte	LCS Report Value	True Value	Rec.%	Accept. Limit
TPH-g	1,070	1,000	107.0	80-120

ND:

Not Detected

Environmental Laboratories

12-29-2003

EPA 8260B Batch QA/QC Report

Client:

Blakely Environmental Investigations, Inc.

Lab Job No.:

BL312074

Project:

Angeles Chemical Co.

Lab Sample ID:

R312095-1

Matrix: Batch No:

Water 1211-VOAW

Date Analyzed:

12-11-2003

L MS/MSD Report Unit: ppb

Compound	Sample Conc.	Spike Conc.	MS	M\$D	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept. Limit	%Rec Accept. Limit
l,l- Dichloroethene	ND	20	20.7	16.8	103.5	84.0	20.8	30	70-130
Benzene	ND	20	21.0	18.7	105.0	93.5	11.6	30	70-130
Trichloro- ethene	מא	20	19.9	19.4	99.5	97.0	2.5	30	70-130
Toluene	ND	20	19.9	19.3	99.5	96.5	3.1	30	70-130
Chlorobenzene	מא	20	18.6	17.9	93.0	89.5	3.8	30	70-130

IL LCS Result Unit: ppb

Compound	LCS Report Value	True Value	Rec.%	Accept. Limit
1,1-Dichloroethene	16.7	20	83.5	80-120
Benzene	17.6	20	88.0	80-120
Trichloro-ethene	18.2	20	91.0	80-120
Toluene	17.8	20	89.0	80-120
Chlorobenzene	17.4	20	87.0	80-120

ND: Not Detected (at the specified limit)

SOUTHLAND TECHNICAL SERVICES, INC.

CHAIN OF CUSTODY RECORD

Lab Job Number BL 312854

T.A.T. Requested O Rush 8 12 24 hours	□ 2-3 days □ Normal	Sample Condition Chilled Autor	Sample seals	Remarks												-				M=Metal Tube P=Plastic bottle	V=VOA vial	nents are se.
T.		<u> </u>		<u> </u>	3	×	<u> </u>		X/5	X	X	×									G=Glass bottle V=	Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client's expense. Distribution: WHITE with report, PINK to courier.
uested	3000 12)7	<u>ታ</u> ች/ኤ ተ/ለ/[ፌ ተ	3 9 3 1 3 1 5 7	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	तुर्ग्यसुर	文 又	X X		Z Z	X X	\times	XXX								3 # V	\	e reported unle or disposed of
Analyses Requested		nates. B' 5 Conf 2 Conf		M) 8		人	X -		<u> </u>	<u>*</u>	×	人						·		Company	Сомрапу	after results ar umed to client NK to courier.
	Or:	᠆ᢞᢅᢖ)sai(•	X X	メメ	X	X	×	×	メメ	X	X	×					Juny 1		Note: Samples are discarded 30 days after results a made. Hazardous samples will be returned to client Distribution: WHITE with report, PINK to courier.
	(38.	Lim Tack		No., type*		とりま							₩45	UoA.						Received by Alex	Received by	Samples are di Hazardous sam bution: WHITE
, a	4	المناه	, • ₹	C.morals	Preserve	H.Sart	\Box						9 2	307	 						Ž <u>j</u>	Note: made. Distril
74.8	7 /	Sampled by,		Sample Collect	Time Type	らい。一生		10:50	56:11	12:37	75.24	tersy	Parlan	Park						Difest	Dake	(323) 888-0728 (323) 888-1509
- 0 4	1 -	Phone Fax Fax Holden-457-2	r Chamb	.1	ID Date	217/ 57	Τ.		797	دد	. 3	7		o 0-	3					Company,	Sumpany	Tel: (Fax: (
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Phone Hole	Project Site	1	Lab Sample ID	813120K U.S							3,	9 %								zes, Inc. Suite L & K
	Address Address A		Project Name/No.		Client Sample ID	11.11	16-100	10 - 00 F	141.12 12.12.12	1	- mm	101	- - - - - - - - - -	7 -1 -1		į			,	Relinquished by	Religguished by	iouthland Tech. Services, Inc. '801 Telegraph Road, Suite L & Jontebello, CA 90640

Environmental Laboratories

12-31-2003

Mr. Hiram Garcia Blakely Environmental Investigations, Inc. 4359 Phelan Road Phelan, CA 92371

Project:

Angeles Chemical Co.

Project Site:

8915 Sorensen Ave., Santa Fe Springs, CA

Sample Date:

12-10-2003

Lab Job No.:

BL312084

Dear Mr. Garcia:

Enclosed please find the analytical report for the sample(s) received by STS Environmental Laboratories on 12-10-2003 and analyzed for the following parameters:

EPA 8015M (Gasoline)

EPA 8260B (VOCs by GC/MS)

EPA 160.1 (Total Dissolved Solids)

EPA 352.1 (Nitrate)

EPA 325.3 (Chloride)

EPA 375.4 (Sulfate)

EPA 376.1 (Sulfide)

EPA 7380 (Total Iron)

Ferrous Iron

EPA 7460 (Manganese)

EPA 310.1 (Alkalinity)

Standard Method 4500 (Carbonate & Bicarbonate)

EPA 415.1 (Total Organic Carbon, Dissolved Organic Carbon)

The sample(s) arrived in good conditions (i.e., chilled, intact) and with a chain of custody record attached.

Chloride, sulfide, Alkalinity, TDS, Carbonate & Bicarbonate analyses were subcontracted to Americhem Testing Laboratory. TOC & DOC analyses were subcontracted to Associated Laboratories. Their original reports are attached.

STS Environmental Laboratory is certified by CA DHS (Certificate Number 1986). Thank you for giving us the opportunity to serve you. Please feel free to call me at (323) 888-0728 if our laboratory can be of further service to you.

Sincerely,

Roger Wang, Ph. D.

Laboratory Director

Enclosures

This cover letter is an integral part of this analytical report.

7801 Telegraph Road Suite L, Montebello, CA 90640

Southland Technical Services, Inc. Environmental Laboratories

12-31-2003

Client:

Blakely Environmental Investigations, Inc.

Lab Job No.:

BL312084

Project:

Angeles Chemical Co.

Project Site:

8915 Sorensen Ave., Santa Fe Springs, CA

Date Sampled:

12-10-2003

Matrix:

Water

Date Received:

12-10-2003

Analytical Test Results

Analyte	EPA Method	Date Analyzed	Reporting Unit	MW-09	MW-10	MW-11	MW-13	MW-18	Reporting Limit
Nitrate	352.1	12-11-03	mg/L	25.5	5.21	3.96	17.4	1.14	0.01
Sulfate	375.4	12-11-03	mg/L	783	19.3	16.0	533	82.9	1.0
Total Iron	7380	12-11-03	mg/Ļ	0.36	31.7	30.6	0.19	63.1	0.1
Ferrous Iron	Colori- metry	12-11-03	mg/L	0.15	1.42	2.32	0.16	1.89	0.05

Analyte	EPA Method	Date Analyzed	Reporting Unit	MW-21			Reporting Limit
Nitrate	352.1	12-11-03	mg/L	22.8	<u></u>	,	0.01
Sulfate	375.4	12-11-03	mg/L	287			1.0
Total Iron	7380	12-11-03	mġ/L	1.20			0.1
Ferrous Iron	Colori- metry	12-11-03	mg/L	0.17			0.05

Not Detected (at the specified limit). ND:

Note: The analyses on this page were subcontracted to Americhem Testing Laboratory, ELAP No. 1758.

Phone: (323) 888-0728 Fax: (323) 888-1509

Southland Technical Services, Inc. Environmental Laboratories

Client: Biakely Environmental Investigations, Inc.

Project:Angeles Chemical Co.

Lab Job No.: BL312084

Matrix: Water

Date Reported: 12-31-2003 Date Sampled: 12-10-2003

EPA 8260B (VOCs by GC/MS, Page 1 of 2) Reporting Unit: ppb

11			12-12-03	12-12-03	12-12-03	12-12-03	12-12-03		
DILUTIO	N FA	CTOR		10	1	200	200		\dashv
LAB S	A MIPT	EID		BL312084-	BL312084-	BL312084-	BL312084-		
			<u> </u>	1	2	3	4		ľ
CLIENT S				MW-02	MW-09	MW-10	MW-11		
COMPOUND	MDL	PQL	MB						
Dichlorodifluoromethane	2	5	ND T	ND	ND	ИD	ND		
Chloromethane	2	5	ND	ND	ND	ND	ND		
Vinyl Chloride	2	2	ЙĎ	38.0 j	5.2	3,700	1,530		
Bromomethane	2	5	ИĎ	ND	ND	ND	ND		
Chloroethane	2	5	ND	ND	ND	626j	1,550		
Trichlorofluoromethane	2	5	ND	ND	ND	ND	ND		
1,1-Dichloroethene	2	5	ND	1,500	43.5	2,750	1,810		\neg
Iodomethane	2	5	ИĎ	ND	NĎ	ND	ND		\neg
Methylene Chloride	2	5	ND	ND	ND	ND	ND		\dashv
trans-1,2-Dichloroethene	2	- 5	ДИ	ЙĎ	ND	ND	ND		\dashv
1,1-Dichloroethane	2	5	ND	2,230	50.0	53,500	49,200		
2,2-Dichloropropane	2	5	ND	ND	ND	ND	ND		
cis-1,2-Dichloroethene	2	5	ND	4,540	21.3	17,200	1,830		\neg
Bromochloromethane	2	5	ND	ND	ND	ND	ND		
Chloroform	2	5	ND	ND	ND	ND	ND		
1,2-Dichloroethane	2	5	ND	ND	ND	ND	ND		\neg
I,1,1-Trichloroethane	2	5	ND	114	ND	7,460	852j		
Carbon tetrachloride	2	- 5	ND	ND	ND	ND	מא		
1,1-Dichloropropene	2	5	ND ,	ND	ЙD	ND	ND		
Benzene	1	1	ND	63.0	2.:1	292	768	***	
Trichloroethene	2	2	ND	133	1.7)	ND	ND		
1,2-Dichloropropane	2	5	ND	ND	ND	ND	ND		
Bromodichloromethane	2	5	ND	ND	ND	ND	ND		
Dibromomethane	2	5	ND.	ND	ND	ND	ИĎ		
trans-1,3-Dichloropropene	2	5	ДN	ND	ND	ИD	ND		
cis-1,3-Dichloropropene	2	5	, ND	ND	ND	ND	ND		
1,1,2-Trichloroethane	2	5	ND	ND	ND	ND	ND		
1,3-Dichloropropane	2	5	ND	ND	ND	ND	ND		
Dibromochloromethane	2	- 5	ND	ND	ND	ND	ďИ		
2-Chloroethylvinyl ether	2	5	ND	ND	ND	ИD	ND		
Bromoform	2	5	DM	ND	ND	D	ДИ		
Isopropylbenzene	2	5	ND	ØИ	ND	ND	ND		
Bromobenzene	2	5	ND	ND	ND	ND	ND		

Environmental Laboratories

Client: Blakely Environmental Investigations, Inc.

Lab Job No.: BL312084

Date Reported: 12-31-2003

Project:Angeles Chemical Co.

Matrix: Water .

Date Sampled: 12-10-2003

EPA 8260B (VOCs by GC/MS, Page 2 of 2) Reporting Unit: (ppb)

COMPOUND	MDL	PQL	MB	MW-02	MW-09	MW-10	MW-11		
Toluene	1	1	ND	ND	ND	13,300	6,570		
Tetrachloroethene	2	2	ND	126	4.5j	ND	ИD		
1,2-Dibromoethane(EDB)	2	5	ND	ND	МĎ	ND	מא		
Chlorobenzene	2	5	ND	ND	ND	ND	ND		
1,1,1,2-Tetrachloroethan	2	5	ND	ND	ND	ND	מא		
Ethylbenzene	1	I	ND	ND	ND	1,450	1,140		
Total Xylenes	1	1	ND	89.6	ND	4,590	2,020		
Styrene	2	5	ND	ND	ND	ND	ND	· ·	
1,1,2,2-Tetrachloroethan	2	5	ND	ND	ND	ND	ND		
1,2,3-Trichloropropane	2	5	ND.	ND	ND	ND	ND		
n-Propylbenzene	2	5	ND	ND	ND	ND	ďИ		
2-Chiorotoluene	2	5	ND	ND	ND	ND	ND		
4-Chlorotoluene	2	5	ND	ND	ND	ND	ND		
1,3,5-Trimethylbenzene	2	5	ND	ND	NĎ	412j	506j		
tert-Butylbenzene	2	5	ND	ND	ND	ND	ДИ		
1,2,4-Trimethylbenzene	2	5	ND	ND	ND	1,640	1,582		
Sec-Butylbenzene	2	5	NĎ	ND	ND	ND	ND		
1,3-Dichlorobenzene	2	5	ND	ND	ND	ND	ND		·
p-Isopropyltoluene	2	5	ND	ND	מא	ИD	ND		
1,4-Dichlorobenzene	2	5	ND	ND	מא	ND	ND		
1,2-Dichlorobenzene	2	5	ND	ND	ND	ND	ND		
n-Butylbenzene	2	5	ND	ND	ND	ND	ИD		
1,2,4-Trichlorobenzene	2	5	מא	ND	ND	ND	ND		
1,2-Dibromo-3- Chloropropane	2	5	ND	ND	ND	ND	ND		-
Hexachlorobutadiene	2	- 5	ND	ND	ND	ND	D		
Naphthalene	2	5	ND	21.6j	ND	ND	ND		t
1,2,3-Trichlorobenzene	2	5	מא	ND	ND	ND	מא		<u> </u>
Acetone	5	25	ND	ND	ND	19,200	2,240j		
2-Butanone (MEK)	5	25	ND	ND	ND	4,080j	ND		†
Carbon disulfide	5	25	מא	ND	- dN	ND	ND		
4-Methyl-2-pentanone	5	25	מא	dИ	dи	3,120j	ND		
2-Hexanone	3	25	ND	ND	dи	ND	סא	 	
Vinyl Acetate	5	25	ND	ND	D	ND	ND	 	
3,4-Dioxane	50	100	ND	ND	ND	ND	ND.	1	
MTBE	2	2	ND	ND	ND	ND	ND	1	
ETBE	2	2	ND	ND	ND	ND	ND	1	1
DIPE	2	2	ND	ND	ND	ND	ND		1
TAME	2	2	ND	ND	ND	ND	ND	† 	
T-Butyl Alcohol	10	10	ND	ИĎ	ЙĎ	ND	ND	T	1

MDL=Method Detection Limit; MB=Method Blank; ND=Not Detected (below DF × MDL), j=trace concentration.

Phone: (323) 888-0728 Fax: (323) 888-1509

Environmental Laboratories

Client: Blakely Environmental Investigations, Inc.

Lab Job No.: BL312084

Date Reported: 12-31-2003

Project:Angeles Chemical Co.

Matrix: Water

Date Sampled: 12-10-2003

EPA 8260B (VOCs by GC/MS, Page 1 of 2) Reporting Unit: ppb

DATE .			12-12	12-12-03	12-12-03	12-12-03	12-12-03	
DILUTIO)N FA(TOR		i	100	20	1	
TARS	AMPL	E LD.		BL312084-	BL312084-	BL312084-	BL312084-	
K		ĺ		5	6	7	10	_
CLIENT S				MW-13	MW-18	MW-21	TB	
COMPOUND	MOL	PQL	MB					
Dichlorodifluoromethane	2	5	ND	ND	ND	ND	ND	
Chloromethane	2	5	ND	ND	ND	ND	ND	
Vinyl Chloride	2	2	ND	ND	DI	47.3	מא	
Bromomethane	2	5	ND	ND	ND	ND	ND	
Chloroethane	2	5	ND	ND	ND	ND	ND	
Trichlorofluoromethane	2	5	ДЙ	4.9j	ND	ND	ND	
1,1-Dichloroethene	2	5	ДN	10.8	4,170	1,960	ND	
Iodomethane	2	5	ND	ИĎ	-ND	ND	ND	
Methylene Chloride	2	5	ND	ND	ND	ND	מא	
trans-1,2-Dichloroethene	2	5	ДŊ	ND	ND	ND	ДИ	
1,1-Dichloroethane	2	5	ND	2.3j	5,440	2,300	ND	
2,2-Dichloropropane	2	5	ND	ND	ИĎ	ND	ND	
cis-1,2-Dichloroethene	2	5	· ND	10.8	14,500	4,400	ND	
Bromochloromethane	2	5	ND	ND	ND	ND	ND	-
Chloroform	2	5	סא	D	ND	DN	ND	
1,2-Dichloroethane	2	5.	ND	ND	ND	ND	ND	
1,1,1-Trichloroethane	2	5	ND	מא	1,130	132	ND	
Carbon tetrachloride	2	5	ND	ND	ND	ND	ND	
1,1-Dichloropropene	2	5	ND	ND	ND	ND	ND	
Benzene	1	1	ND	ND	415	64	ND	
Trichloroethene	2	2	ND	47.0	169j	140	ND	
1,2-Dichloropropane	2	5	ND	ND	ND	ND	ИD	
Bromodichloromethane	2	5	ND	ND	ND	ND	ИĎ	
Dibromomethane	2	5	ND	ND	ND	ND	ND	
trans-1,3-Dichloropropene	2	5	ND	ďИ	ND	ND	ND	
cis-1,3-Dichloropropene	2	5	ND	ND	ND	ND	ИD	
1,1,2-Trichloroethane	2	5	ND	ND	ND	ND	ND	
1,3-Dichloropropane	2	5	ND	ND "	ND	ND	ND	
Dibromochloromethane	2	5	ND	ND	ND	ND	ND	
2-Chloroethylvinyl ether	2	5	ДN	ND	ND	ND	ND	<u> </u>
Bromoform	2	5	ND	ND	ND	ND	ND	
Isopropylbenzene	2	5	ND	ND	МD	19.5j	ND	
Bromobenzene	2	5	ND	ND	ND	ND	מא	

5

Environmental Laboratories

Client: Blakely Environmental Investigations, Inc.

Project:Angeles Chemical Co.

Lab Job No.: BL312084

Matrix: Water

Date Reported: 12-31-2003

Date Sampled: 12-10-2003

EPA 8260B (VOCs by GC/MS, Page 2 of 2) Reporting Unit: (ppb)

COMPOUND	MDL	PQL	MB	MW-13	MW-18	MW-21	TB	<u> </u>
Toluene	1	1	ND	ND	2,350	ND	ND	
Tetrachloroethene	2	2	ND	36.3	ND	133	ND	
1,2-Dibromoethane(EDB)	2	5	ND	ND	ND	ND	ЙÖ	
Chlorobenzene	2	5	МĎ	ND	ND	ND	· ND	
1,1,1,2-Tetrachloroethan	2	5	מֿא	מא	מא	ND	ND	
Ethylbenzene	1	. 1	ND	· ND	690	ND	ND	
Total Xylenes	1	ì	ND	NĎ	2,610 "	91.9	ND	
Styrene	2	5	ND	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethan	2	5	ND	ND	МĎ	ND	ND	
1,2,3-Trichloropropane	2	5	ND	ND	ND	ND	מא	
n-Propylbenzene	2	5.	ИD	סמ	230j	מא	ND	1
2-Chlorotoluene	2	5	ND	NĎ	ПD	NĎ	ND	
4-Chlorotoluene	2	3	ND	ND	ИD	ממ	מא	
1,3,5-Trimethylbenzene	2	5	DИ	סא	459j	מא	ND	
tert-Butylbenzene	2	5	dИ	ND	ND	ND	, ND	
1,2,4-Trimethylbenzene	2	5	ND	מא	1,810	מא	ND	
Sec-Butylbenzene	2	5	ДN	. מא	ND	ND	ND	
1,3-Dichlorobenzene	2	5	ИĎ	ND	ND	מא	ND	
p-Isopropyltoluene	2	5	ND	ND	ND	ND	ND	
1,4-Dichlorobenzene	2	5	ND	ND	ND	ND	ND	
1,2-Dichlorobenzene	2	5	ďИ	ND	ND	ND	ND .	
n-Butylbenzene	2	3	ND.	ND	ND	ЙĎ	ND	
1,2,4-Trichlorobenzene	2	5	ND	ND	ND	ND .	ND	
1,2-Dibromo-3- Chloropropane	2	5	ND	ND	ND	ND	ND	
Hexachlorobutadiene	2	5	ND	ND	ND	ND	ND	
Naphthalene	2	5	ДИ	ND	ND	20.0 j	ND	
1,2,3-Trichlorobenzene	2	5	מא	ND	ND	ND	ND	
Acetone	5	25	ND	ND	32,400	ND	QN	
2-Butanone (MEK)	5	25	ND	ND	23,700	ND	ЙD	
Carbon disulfide	5	25	D	ND	ND	ИD	ŅD	
4-Methyl-2-pentanone	5	25	ND.	ND	1,330j	ND	ND	
2-Hexanone	5	25	ND	ND	ND	מא	מא	
Vinyl Acetate	5	25	ND	ND	ИD	ИĎ	מא	
1,4-Dioxane	50	100	ND	ND	ND	ND	ИĎ	
MTBE	2	2	ND	ND	ND	ND	ND	
ĒTBE	2	2	ND	ND	ND	ND	מא	
DIPE	2	2	ND	ND	ND	ND	מא	
TAME	2	2	ND	ND	NĎ	NĎ	ND	
T-Butyl Alcohol	10	10	ND	מא	ND	ND	ND	

MDL-Method Detection Limit, MB-Method Blank; ND-Not Detected (below DF × MDL), j-trace concentration:

Phone: (323) 888-0728 Fax: (323) 888-1509

Environmental Laboratories

12-31-2003

Client:

Blakely Environmental Investigations, Inc.

Lab Job No.:

BL312084

Project:

Angeles Chemical Co.

Date Sampled:

12-10-2003

Project Site:

8915 Sorensen Ave, Santa Fe Springs

Matrix:

Water

Date Received:

12-10-2003

Date Analyzed:

12-11-2003

Batch No.: CL11-GW1

> EPA 8015M (Gasoline) Reporting Units: µg/L (ppb)

Sample ID	Lab ID	Gasoline (C4-C12)	Method Detection Limit	PQL
Method Blank		ND	50	50
MW-09	BL312084-2	1,280	50	50
MW-10	BL312084-3	77,200	50	50
MW-11	BL312084-4	51,500	50	50
MW-13	BL312084-5	64	50	50
MW-18	BL312084-6	40,600	50	50
MW-21	BL312084-7	2,140	50	50

7

Not Detected (at the specified limit) ND:

Southland Technical Services, Inc. Environmental Laboratories

12-31-2003

Client:

Blakely Environmental Investigations, Inc.

Lab Job No.:

BL312084

Project:

Angeles Chemical Co.

Date Sampled:

12-10-2003

Project Site:

8915 Sorensen Ave, Santa Fe Springs

Date Received:

12-10-2003

Matrix:

Product

Date Analyzed:

12-10-2003

EL10-DW1 Batch No .:

EPA 8015M (Total Petroleum Hydrocarbons) Reporting Units: mg/L (ppm)

Sample 100	Lab ID	DF	C4-C12* (Gasoline Range)	C13-C23 (Diesel Range)	C23-C40 (Oil Range)
Method Detect	tion Limit (MDL)		5	5	25
Practical Qu	antitation Limit	· · · · · · · · · · · · · · · · · · ·	10	10	50
Method Blank		1	ND .	ND	ND
MW-16	BL312084-8	500	455,000	101,000	ND
MW-19	BL312084-9	500	425,000	58,700	מא

Not Detected (at the specified limit) ND:

Phone: (323) 888-0728 Fax: (323) 888-1509

Environmental Laboratories

12-31-2003

EPA 8015M (TPH) Batch QA/QC Report

Client:

Blakely Environmental Investigations, Inc.

Lab Job No.:

BL312084

Project:

Angeles Chemical Co.

ST1210-1

Matrix:

Water

Lab Sample ID: Date Analyzed:

12-10-2003

Batch No.:

EL10-DW1

L MS/MSD Report Unit: ppm

Analyte	Sample Conc.	Śpike Conc.	MS	MSD	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept, Limit	%Rec Accept. Limit
TPH-d	ND	20	17.7	18.0	88.5	90.0	1.7	30	70-130

IL LCS Result Unit ppm

9

Analyte	LCS Report Value	True Value	Rec.%	Accept. Limit
TPH-d	17.8	20	89.0	80-120

ND: Not Detected

Environmental Laboratories-

12-31-2003

EPA 8015M (TPH) Batch QA/QC Report

Client:

Blakely Environmental Investigations, Inc.

Lab Job No.:

BL312084

Project:

Angeles Chemical Co.

Water

Lab Sample ID:

R312091-13

Matrix: Batch No.:

CLI1-GWI

Date Analyzed:

12-11-2003

L MS/MSD Report Unit: ppb

Analyte	Sample Conc.	Spike Conc.	MS	MSD	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept. Limit	%Rec Accept. Limit
TPH-g	ND	1000	1,120	1,070	112.0	107.0	4.6	30	70-130

II. LCS Result Unit: ppb

Analyte	LCS Report Value	True Value	Rec.%	Accept. Limit
ТРН-g	1,050	1,000	105.0	80-120 ·

ND: Not Detected

Environmental Laboratories

12-31-2003

EPA 8260B Batch QA/QC Report

Client:

Blakely Environmental Investigations, Inc.

Lab Job No.:

BL312084

Project:

Angeles Chemical Co.

Lab Sample ID:

BL312084-10

Matrix: Batch No.:

1212-VOAW

Water

Date Analyzed:

12-12-2003

Phone: (323) 888-0728 Fax: (323) 888-1509

L MS/MSD Report Unit: ppb

Compound	Sample Conc.	Spike Conc.	MS	MSD	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept. Limit	%Rec Accept. Limit
1,1- ` Dichloroethene	ND	20	21.2	19.3	106.0	96.5	9.4	30	70-130
Benzene	ND	20	20.6	19.6	103.0	98.0	5.0	30	70-130
Trichloro- ethene	ND	20	20.9	19.8	104.5	99.0	5.4	30	70-130
Toluene	ND	20	19.7	20.5	98.5	102.5	4,0	30	70-130
Chlorobenzene	ND	20	19.2	18.4	96.0	92.0	4.3	30 ·	70-130

II. LCS Result Unit: ppb

Analyte	LCS Value	True Value	Rec.%	Accept. Limit
1,1-Dichloroethene	21.2	20	106.0	80-120
Benzene	20.3	20	101.5	80-120
Trichloro-ethene	23.5	20	117.5	80-120
Toluene	21.0	20	105.0	80-120
Chlorobenzene	19.3	20	96.5	80-120

ND:

Not Detected.

SOUTHLAND TECHNICAL SERVICES, INC.

CHAIN OF CUSTODY RECORD

B7 312100

Lab Job Number

C) Rush 8 12 24 hours C 2-3 days C Normal 겁 86312109-١ Sample Condition T.A.T. Requested Chilled X Intact Remarks KSample seals P=Plastic bottle V=VOA vial Note: Samples are discarded 30 days after results are reported unless other arrangements are Container types: A=Air Beg G=Glass bottle Analyses Requested 8260B (MTBE Confirm.) Соперану 8260B (Oxygenates, BTEX) 8790B (AQC?) (fasaid) Mč (08 8015M (Gasoline) 602/8021 (BTEX,MTBE) & size of No.,type* Preserve container Received by - Breke. 喜 なな Swiller Swin £ - Brackston Sumple 3 Ŧ 7 ä 7 201 Sampled by Malrix Date (3-15-103 Туре LS.C. Time 矛 8 Sample Collect 美 5 8 提)都(2013 <u>5</u> 3 2 8 まずかれま 3 €0.5.4 Bulicane Lat Date Phone 7.572 Sample ID Ę 125 outhland Tech. Services, Inc. 23 24E <u>(</u> <u>(</u> いとしている スコープスを考 Sample ID パーグス 120.02 Project Name/No. Report Attention Relinquished by Relinquished b /tw-多 Address

made. Hazardous samples will be returned to client or disposed of at client's expense.

Distribution: WHITE with report, PINK to courier.

(323) 888-1509 (323) 888-0728

Tel: Fax:

801 Telegraph Road, Suite L & K

fontebello, CA 90640

Environmental Laboratories

12-31-2003

Mr. Hiram Garcia Blakely Environmental Investigations, Inc. 4359 Phelan Road Phelan, CA 92371

Project:

Angeles Chemical Co.

Project Site:

8915 Sorensen Ave, Santa Fe Springs

Sample Date: 12-15-2003

Lab Job No.: BL312109

Dear Mr. Garcia:

Enclosed please find the analytical report for the sample(s) received by STS Environmental Laboratories on 12-15-2003 and analyzed for the following parameters:

EPA 8260B (VOCs by GC/MS)

All analyses have met the QA/QC criteria of this laboratory.

The sample(s) arrived in good conditions (i.e., chilled, intact) and with a chain of custody record attached.

STS Environmental Laboratory is certified by CA DHS (Certificate Number 1986). Thank you for giving us the opportunity to serve you. Please feel free to call me at (323) 888-0728 if our laboratory can be of further service to уоц.

Sincerely.

Roger Wang, Ph. D. Laboratory Director

Enclosures

This cover letter is an integral part of this analytical report.

Environmental Laboratories

Client: Blakely Environmental Investigations, Inc.

Project:Angeles Chemical Co.

Lab Job No.: BL312109

Matrix: Water

Date Reported: 12-31-2003

Date Sampled: 12-15-2003

EPA 8260B (VOCs by GC/MS, Page 1 of 2) Reporting Unit: ppb

DATE A	ANAL	ZED	12-17	12-17-03	12-17-03	12-17-03	12-17-03	12-17-03	12-17-03
DILUTIC	N FA	CTOR		·· l	1 1	1	1	ī	1
LAB S	A MIDT	E I D		BL312109	BL312109	BL312109	BL312109	BL312109	BL312109
LAD 5	AMILL	e LD.		-1	-2	-3	-4	-5	-6
CLIENT S	A MPL	EID		MW-23	MW-23	MW-24	MW-24	MW-25	MW-25
1				Тор	Bottom	Тор	Bottom	Тор	Bottom
COMPOUND	MDL	PQL	МВ			"-			
Dichlorodifluoromethane	_2	5	ND	ФИ	ND	ND	ND	ND	ND
Chloromethane	2	5	מא	NĎ	ND	ND	ND	מא	ND
Vinyl Chloride	2	2	ND	ND	ND	ND	ИĎ	ND	ND
Bromomethane	2	5	ND	ND	ND	ND	ND	ND	ND
Chloroethane	2	5	ND	ND	ЙĎ	NĎ	NĐ	ND	ЙЙ
Trichlorofluoromethane	2	5	מא	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	2	5	ND	6.1	6.0	ND	14.6	6.2	7.4
lodomethane	2	5	ND .	NĎ	ND	ND	ND	ND	ŪИ
Methylene Chloride	2	5	ND	ИD	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	2,	5	ND	ND	ND	"ND	ND	ND	ND
1,1-Dichloroethane	2	5	ND	ND	ND	מא	D	ND	ND
2,2-Dichloropropane	2	5	ND	ND	ND	ND	, ND	ND	ND
cis-1,2-Dichloroethene	2	5	ИĎ	·ND	2.4J	5.7	8.8	ND	3.4J
Bromochloromethane	2	5	ND	ND	ND	ND	ND	ND	D
Chloroform	2	5	ИĎ	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	-2	- 5	ND	ND	DD	ND	NĎ	ND	ND
1,1,1-Trichloroethane	2	5	ND	2.6J	3.2	ND	2.33	αи	ND
Carbon tetrachloride	2	5	ND	ND	ND	ďИ	ND	ND	ND
1,1-Dichloropropene	2	5	ND	מא	ДЙ	ND	ND "	ND	ND
Benzene	1	1	ND	ND	ND	ND	ND	ND	מא
Trichloroethene	2	2	ND	7.9	11.3	49.3	51.4	39.4	38.5
1,2-Dichloropropane	2	5	ND	ND	ND	ND.	ND	ND	ND
Bromodichloromethane	2	5	ND	ND	ND	ND	ND	ND	ďИ
Dibromomethane	2	5	ND	ND	מא	ND	ND	ND	UND
trans-1,3-Dichloropropene	2	5	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	2	5	ND	ND	ND	ИĎ	МD	ND	ND
1,1,2-Trichloroethane	2	5	ND	NĎ	ND	ND	ND	ND	מא
I,3-Dichloropropane	2	5	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	2	5	ND	ND	ND	ND	ND	ND	ND
2-Chloroethylvinyl ether	2	5	QN	ND	סא	ND	ND	ND.	ND
Bromoform	2	5	ND	ND	ND	ND	ND	ND	ЙĎ
Isopropylbenzene	2	5	ND	ND	ND	ND	מא	dИ	ND
Bromobenzene	2	5	ND	ND	ND	ND	ДИ	ND	ND

7801 Telegraph Road Suite L, Montebello, CA 90640 Phone: (323) 888-0728 Fax: (323) 888-1509

Environmental Laboratories

Client: Blakely Environmental Investigations, Inc.

Lab Job No.: BL312109

Date Reported: 12-31-2003

Project:Angeles Chemical Co.

Matrix: Water

Date Sampled: 12-15-2003

EPA 8260B (VOCs by GC/MS, Page 2 of 2) Reporting Unit: (ppb)

COMPOUND	MDL	PQL	МВ	MW-23	MW-23	MW-24	MW-24	MW-25	MW-25
COMPOUND	, with [rQL	IVLE	Тор	Bottom	Тор	Bottom	Top	Bottom
Toluene	1	1	ND	ND	ND	ND	ND	מא	ŪΝ
Tetrachloroethene	2	2	ND	14.8	30.6	24,3	75.4	37.2	37.1
1,2-Dibromoethane(EDB)	2	- 5	ND	ND	ND	ND	ДŅ	ND	ND
Chlorobenzene	2	5	ΝD	ЙÞ	dи	ND	ND	ND	ND
1,1,1,2-Tetrachloroethan	2 "	5	NĎ	ИĎ	ND	ND.	ND	ND	ND
Ethylbenzene	1	l ,	ND	מא	ND	ND	ND	מא	NĎ
Total Xylenes		1	מא	ND	מא	ND	ND	ND	DN
Styrene	2	5	dИ	ДИ	ΖИ	ИД	ИD	ND	ND
1,1,2,2-Tetrachloroethan	2	5	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	2	5	מת	ND	מא	ND	ИD	ND	ND
n-Propylbenzene	2	5	ND	ND	ND	סא	ND	ND	ND
2-Chlorotoluene	2	5	מא	ИD	ИD	ИD	ИD	ЙĎ	ND.
4-Chlorotoluene	2	3	מַא	ND	ND	ND	ND	ND	ДИ
1,3,5-Trimethylbenzene	2	5	סא	ND	סמ	ND	מא	ND	ND
tert-Butylbenzene	2	5	ND	ND	ND	ND	ND	ИĎ	ДИ
1,2,4-Trimethylbenzene	2	5	ND	ND	מא	ND	ИД	מא	ИD
Sec-Butylbenzene	2	3	ND	ND	ДИ	ND	ND	מא	מא
1,3-Dichlorobenzene	2	3	ND	ND	ND	ND	ND	ЙĎ	ND
p-Isopropyltoluene	2	- 5	ND	ND	ND	מא	ND	ND.	ND
1,4-Dichlorobenzene	2	5	ND	ND	D	ND	ОИ	ИD	ND
1,2-Dichlorobenzene	2	3	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	2	5	ND	ND	ND	NĎ	ND	מא	ND
1,2,4-Trichlorobenzene	2	5	ИĎ	מא	ND	ND	ND	ND	ND
I,2-Dibromo-3- Chloropropane	2	5	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND -	ND	ND	מא	- du
Naphthalene	$\frac{1}{2}$	3	סא	ND	ND	ND	ND ND	ND:	ND
1,2,3-Trichlorobenzene		5	D	ND	ND -	ND	- ND	ND	ND
Acetone	25	25	מא	ND	ND	ND	ND	ND	T ND
2-Butanone (MEK)	25	25	ND	ND	ND	ND	ND -	ND -	ND
Carbon disulfide	25	25	ND	ND	ND	ND	ND ND	ND	ND
4-Methyl-2-pentanone	25	25	ND	ND D	ND	ND ND	ND	ND	1 ND
2-Hexanone	25	25	ND	ND	- QN	ND	ND	ND	ND ND
Vinyl Acetate	25	25	ND	ND	ND	ND ND	ND -	ND -	סא
1,4-Dioxane	50	100	ND	ND	ND	ND	ND	- מא	<u>לוא</u>
MTBE	2	2	ND	ND	ND QN	ND	ND TO	םא -	ND
ETBE	1 2	2	ND	ND	ND	ND	ND	- dN	
DIPE	$\frac{2}{2}$	$\frac{2}{2}$	<u>ND</u>	ND ND	ND	ND	ND	- ND	ND
TAMÉ		2	עא מא	ND	ND	- סא	ND		ND
T-Butyl Alcohol	10	10	ND.	ND	1	· -		ND	ND
1-Butyl Alconol		10	עא	לוא ד	ND	ND	ND	ИД	ND

MDL=Method Detection Limit; MB=Method Blank; ND=Not Detected (below DF × MDL), j=trace concentration

7801 Telegraph Road Suite L. Montebello, CA 90640

Phone: (323) 888-0728 Fax: (323) 888-1509

Environmental Laboratories

12-31-2003

EPA 8260B Batch QA/QC Report

Client:

Blakely Environmental Investigations, Inc.

Project:

Angeles Chemical Co.

Matrix:

Water

Batch No:

1217-VOAW

Lab Job No.:

BL312109

Lab Sample ID:

Q312133-3

Date Analyzed:

12-17-2003

L MS/MSD Report Unit: ppb

Compound	Sample Conc.	Spike Conc.	MS	MSD	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept. Limit	%Rec Accept. Limit
I,I- Dichloroethene	ND	20	20.7	23.8	103.5	119.0	13.9	30	70-130
Benzene	ND	20	21.1	22,9	105.5	114.5	8.2	30	70-130
Trichloro- ethene	ND	20	20.3	25.1	101.5	125.5	21.1	30	70-130
Toluene	מא	20	19.7	23.3	98.5	116.5	16.7	30	70-130
Chlorobenzene	ND	20	20.7	20.9	103.5	104.5	1.0	30	70-130

IL LCS Result Unit: ppb

Compound	LCS Report Value	True Value	Rec.%	Accept, Limit
1,1-Dichloroethene	17.2	20	86.0	80-120
Benzene	19.7	20	98.5	80-120
Trichloro-ethene	18.9	20	94.5	80-120
Toluene	18.5	20	92.5	80-120
Chlorobenzene	19.5	20	97.5	80-120

ND:

Not Detected

Phone: (323) 888-0728 Fax: (323) 888-1509

<u> </u>		
SOUTHILAND TECHNICAL SERVICES, PMC	-	CORD
Al ough		CHAIN OF CUSTODY RECORD
CHANIC		CUST
AN TE		AIN OF
		E)
7	{	

	T.A.T. Requested	D 2-3 days X Normal	Sample Condition	C Sample seats	Remarks														•			M=Metal Tube P=Plastic bottle	V=VOA via!	gements are yense.
Lab Job Number	į	7	reur	fuel	√ :	SQ.L	X					×					·					,	G=Glass bottle	less other arrany if at client's exp
L.	ested .	2.FVW	ng Moi):4 '	מינקק	בייני אנדי	×				>	×					♪					1.19		eported un disposed o
,	Analyses Requested		<i>γν:∱/</i> ιμιο⊃		7///	כנוקים	×				>	 У					/					1/2/ in	Ŋ.	esults are o client or courier
	Analy	<u> </u>	TB .255	Affansi OC2)	xO) 8	10978	-	-													,	Company A74	Company	days after re retumed to , PINK to c
-				rifozs (ləsəi																•		1	•	carded 30 ples will by with report
RD	-	38. an 908	rm,x	ara)	No.,type*	ntainer		,											·	-		Recisional by	Received by	Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client's expense. Distribution: WHITE with report, PINK to courier.
ODY RECORD		2	_	Company,	Samule						_					-							Tiene	Note: made Distri
USTOD	. Inc.	Montebullo,	Sampled by	×	Matrix	,	HNO				Þ	HVO	_				>	,				Dark 17/11/23	Date	8-0728 8-1509
CHAIN OF CUST	Services. Inc.		bas/-888	Chemica	Sample Collect	e Time	63					<u>~</u>						,						(323) 888-0728 (323) 888-1509
CHA	as ha		F# 3	-	Sam	Date Date	2 14/03	-3	-	-F	* 3-	2 12/10/03	3 1		70		<u>→</u>			-		Company STS	Company	. 는 프로 프로 ::
	Technical		Phone 3 23	Project Site	(le)	Sample 1D	KWWW.7)			,	8131184-2	ξ-	7) -	7~	1		·		,		97		, Inc. lite L & K
	Client South Land	Address 7801 Telegrouph	Report Attention Roser World	BLS I WOTH, BLYINGE	Client	Sample ID	MW-11	-14	<u>۔ رک</u>	-17	gr.	MW-9	0)-	11-	-13	81-	-1				·	Relinquished by	Reimquished by	Southland Tech. Services, Inc. 1803 Telegraph Road, Suite L & Montchello, CA 90640

AmeriChem Testing Laboratory

1761 N. Batavia St. Orange, CA 92865 (714) 921-1550 FAX: (714) 921-4770

Analytical Report

REPORT NUMBER: AL-5193-2 CLIENT: STS Environmental Lab.

7801 Telegraph Rd. suite J Montebello, CA 90640 REPORT ON: Water sample-BL312074-2 MW-12, 12/09/03

DATE RECEIVED: 12/12/03 DATE REPORTED: 12/16/03

ANALYSIS	TEST RESULT mg/l	DET. LIMIT mg/l	METHOD EPA
Chloride	74.4	0.1	325.3
Sulfide, dissolved TDS	ND 730	0.05 5.0	376.1 160.1
Manganese	1.47	0.05	243.2
Carbonate	ND	2.0	Standard Method 4500
Bicarbonate	204	2.0	Standard Method 4500
Total Alkalinity	340	1.0	310.1

TDS= Total dissolved solids

AmeriChem

1761 N. Batavia St. Orange, CA 92865

(714) 921-1550 FAX: (714) 921-4770

<u> nalytical Report</u>

REPORT NUMBER: AL-5193-3

CLIENT:

STS Environmental Lab. 7801 Telegraph Rd. suite J Montebello, CA 90640

REPORT ON: Water sample-BL312074-3 MW-14, 12/09/03

DATE RECEIVED: 12/12/03 DATE REPORTED: 12/16/03

ANALYSIS	TEST RESULT mg/l	DET. LIMIT mg/l	METHOD EPA
Chloride Sulfide, dissolved	160 ND	0.1 0.05	325.3 376.1
TDS Manganese	1,140 1.02	5.0 0.05	160.1 243.2
Carbonate	ND	2.0	Standard Method 4500
Bicarbonate	210	2.0	Standard Method 4500
Total Alkalinity	350	1.0	310.1

TDS= Total dissolved solids

176 N. Batavia St. Orange, CA 92865

(714) 921-1550 FAX: (714) 921-4770

Analytical Report

REPORT NUMBER: AL-5193-4

CLIENT:

STS Environmental Lab. 7801 Telegraph Rd. suite J Montebello, CA 90640

REPORT ON:

Water sample-BL312074-4

MW-15, 12/09/03

DATE RECEIVED: 12/12/03

DATE REPORTED: 12/16/03

ANALYSIS	TEST RESULT mg/l	DET. LIMIT mg/l	METHOD EPA
Chloride Sulfide, dissolved TDS Manganese Carbonate	113 ND 1,260 1.14 ND	0.1 0.05 5.0 0.05 2.0	325.3 376.1 160.1 243.2 Standard Method 4500
Bicarbonate	279	2.0	Standard Method 4500
Total Alkalinity	465	1.0	310.1

TDS= Total dissolved solids

Peter T. Wu

Lab Director

1761 N. Batavia St. Orange, CA 92865 (714) 921-1550 FAX: (714) 921-4770

Analytical Report

REPORT NUMBER: AL-5193-5 CLIENT: STS Environmental Lab. 7801 Telegraph Rd. suite J Montebello, CA 90640 REPORT ON: Water sample-BL312074-5 MW-17, 12/09/03

DATE RECEIVED: 12/12/03 DATE REPORTED: 12/16/03

ANALYSIS	TEST RESULT mg/l	DET. LIMIT mg/l	METHOD EPA
Chloride	. 106	0.1	325.3
Sulfide, dissolved	ND	0.05	376.1
TDS	1,170	5.0	160.1
Manganese	0.23	0.05	243.2
Carbonate	ND	2.0	Standard Method 4500
Bicarbonate	258	2.0	Standard Method 4500
Total Alkalinity	430	1.0	310.1

TDS= Total dissolved solids

AmeriChem Testing Laboratory

1761 N. Batavia St. Orange, CA 92865

(714) 921-1550 FAX: (714) 921-4770

Analytical Report

REPORT NUMBER: AL-5193-6 CLIENT: STS Environmental Lab. 7801 Telegraph Rd. suite J Montebello, CA 90640 REPORT ON: Water sample-BL312074-6 MW-20, 12/09/03

DATE RECEIVED: 12/12/03 DATE REPORTED: 12/16/03

ANALYSIS	TEST RESULT	DET. LIMIT	METHOD
	mg/l	mg/l	EPA
Chloride Sulfide, dissolved TDS Manganese Carbonate	99.3	0.1	325.3
	ND	0.05	376.1
	1,200	5.0	160.1
	0.12	0.05	243.2
	ND	2.0	Standard Method
Bicarbonate Total Alkalinity	287 479	2.0	4500 Standard Method 4500 310.1

TDS= Total dissolved solids

Analytical Report

REPORT NUMBER: AL-5193-7

CLIENT:

STS Environmental Lab. 7801 Telegraph Rd. suite J Montebello, CA 90640 REPORT ON: Water sample-BL312084-2 MW-9, 12/10/03

DATE RECEIVED: 12/12/03 DATE REPORTED: 12/16/03

ANALYSIS	TEST RESULT	DET. LIMIT	METHOD
	mg/l	mg/l	EPA
Chloride	238	0.1	325.3
Sulfide, dissolved	ND	0.05	376.1
TDS	1,250	5.0	160.1
	0.15	0.05	243.2
Manganese Carbonate	ND	2.0	Standard Method
Bicarbonate	324	2.0	4500 Standard Method 4500
Total Alkalinity	540	1.0	310.1

TDS= Total dissolved solids

1761 N. Batavia St. Orange, CA 92865 (714) 921-1550 FAX: (714) 921-4770

Analytical Report

REPORT NUMBER: AL-5193-8

CLIENT:

STS Environmental Lab. 7801 Telegraph Rd. suite J Montebello, CA 90640 REPORT ON: Water sample-BL312084-3 MW-10, 12/10/03

DATE RECEIVED: 12/12/03 DATE REPORTED: 12/16/03

ANALYSIS	TEST RESULT mg/l	DET. LIMIT mg/l	METHOD EPA
Chloride	362	0.1	325.3
Sulfide, dissolved	ND	0.05	376.1
TDS	1,540	5.0	160.1
Manganese	6.10	0.05	· 243.2
Carbonate	ND	2.0	Standard Method 4500
Bicarbonate	533	2:0	Standard Method 4500
Total Alkalinity	889	1.0	310.1

TDS= Total dissolved solids

1761 N. Batavia St. Orange, CA 92865 (714) 921-1550 FAX: (714) 921-4770

Analytical Report

REPORT NUMBER: AL-5193-9 CLIENT: STS Environmental Lab. 7801 Telegraph Rd. suite J

Montebello, CA 90640

REPORT ON: Water sample-BL312084-4 MW-11, 12/10/03

DATE RECEIVED: 12/12/03 DATE REPORTED: 12/16/03

ANALYSIS	TEST RESULT mg/l	DET. LIMIT mg/l	METHOD EPA
Chloride	344	0.1	325.3
Sulfide, dissolved	ND	0.05	376.1
ZOT	1,690	5.0	160.1
Manganese	13.5	0.05	243.2
Carbonaté	ND	2.0	Standard Method 4500
Bicarbonate	547	2.0	Standard Method 4500
Total Alkalinity	912	1.0	310.1

TDS= Total dissolved solids

AmeriChem Testing Laboratory

1761 N. Batavia St. Orange, CA 92865

(714) 921-1550 FAX: (714) 921-4770

Analytical Report

REPORT NUMBER: AL-5193-10

CLIENT:

STS Environmental Lab. 7801 Telegraph Rd. suite J Montebello, CA 90640 REPORT ON: Water sample-BL312084-5 MW-13, 12/10/03

DATE RECEIVED: 12/12/03 DATE REPORTED: 12/16/03

ANALYSIS	TEST RESULT mg/l	DET. LIMIT mg/l	METHOD EPA
Chloride	106	0.1	325.3
Sulfide, dissolved	ND	0.05	376.1
TDS	1,160	5.0	160.1
Manganese	0.22	0.05	243.2
Carbonate	ND	2.0 .	Standard Method 4500
Bicarbonate	261	2.0	Standard Method 4500
Total Alkalinity	435	1.0	310.1

TDS= Total dissolved solids

1761 N. Batavia St. Orange, CA 92865

(714) 921-1550 FAX: (714) 921-4770

Analytical Report

REPORT NUMBER: AL-5193-11

CLIENT:

STS Environmental Lab. 7801 Telegraph Rd. suite J Montebello, CA 90640 REPORT ON: Water sample-BL312084-6 MW-18, 12/10/03

DATE RECEIVED: 12/12/03 DATE REPORTED: 12/16/03

ANALYSIS	TEST RESULT mg/l	DET. LIMIT mg/l	METHOD EPA
Chloride Sulfide, dissolved	99.3 ND	0.1 0.05	325.3 376.1
TDS	1,520	5.0	160.1
Manganese Carbonate	6.94 ND	0.05 2.0	243.2 Standard Method
Bicarbonate	552	2.0	4500 Standard Method 4500
Total Alkalinity	920	1.0	310.1

TDS= Total dissolved solids

AmeriChem Testing Laboratory

1761 N. Batavia St. Orange, CA 92865 (714) 921-1550 FAX: (714) 921-4770

Analytical Report

REPORT NUMBER: AL-5193-12

CLIENT:

STS Environmental Lab. 7801 Telegraph Rd. suite J Montebello, CA 90640 REPORT ON: Water sample-BL312084-7

MW-21, 12/10/03

DATE RECEIVED: 12/12/03 DATE REPORTED: 12/16/03

ANALYSIS	TEST RESULT mg/l	DET. LIMIT mg/l	METHOD EPA
Chloride	135	0.1	325.3
Sulfide, dissolved	ND	0.05	376.1
TD\$	1,110	5.0	160.1
Manganese	1.96	0.05	243.2
Carbonate	ND	2.0	Standard Method 4500
Bicarbonate	318	2.0	Standard Method 4500
Total Alkalinity	530	1.0	310.1

TDS= Total dissolved solids

ASSOCIATED LABORATORIES 806 N. Batavia • Orange, CA 92868 (714) 771-6900 • Fax: (714) 538-1209

121404

CHAIN OF CUSTODY RECORD Date /2//2/ () < Page ___ { of ____

											, ,		
CLIENT SOUTH	hland Ta	chnical s	ervices	THE.			-			 .			
ADDRESS 7801				PROJECT MANAGER Roger Wancy PHONE NUMBER 323 888 0728				Samples Intact Yes No County Seals Intact Yes No Sample Ambient Cooled Frozen					
Mortebello				PHONE NUMBER 722 868 0728							rozen		
PROJECT NAME (Ang. Chim) BL 312	074, BL31		SAMPLERS	: (Signatu	ıre)		-1		Same (Regula	Day 2	4 Hr Hr	-
SAMPLE NUMBER		LOCATION DESCRIPTION		DATE	TIME	SA WATER	MPLE TY	SOUD	NO OF CNTNRS	SUSP. CONTAM.		TESTS REQUIRED	
BL312074-2	MW-12	(i) 100		12/1/03	Bill	>		<u> </u>			Total & Dis	solved Org	Carbon TOC
-3	MW-14	(1) / /	X	H	14-N	V					ž	. DOC	
	MW-15			-1	13.35	V					TOC	, DOC	
-5	MW-17	د د	,	4	11:51	V					11	·l	
-6	MW-20	4) 10	1	11	12:22	√	<u> </u>		[1 #		
BL312084-2	MW-9	(\cdot)		12/10/03							TOC.	D00	
-3	-10	(4) 604	NF 15	1,				<u> </u>		ļ <u> </u>			
-4	-11	11 130	DF5	t _f				ļ <u>.</u>					
-5	-13			1,			<u>-</u> .	ļ ·					
-b	-18	(11) 20	Ŷ.	11						ļ			
~1	- 21	<u> </u>	. .	į į				<u> </u>			1		
			<u>· " </u>										
	<u>-</u>			<u></u>					<u></u>	<u></u>		1	f Mr France
Relinquished by: (S		Ø.	$\mathbf{H}\mathbf{Z}$: \mathbf{L}	v: (Signature)				Date/Tim/ 2/12 1		I hereby a indicated	authorize the pe work.	mormance c	or the above
Relinquished by: (S		· ·	Received by	Received by Laboratory for analysis: (Signature) 2 /2-/5-10 /0-7-0 Dale/Time									
Special Instructions	3:										UTION: White w		ellow to AL,

FAX 714/538-1209

CLIENT Southland Technical Services

(6304)

LAB REQUEST 121404

ATTN: Roger Wang

7801 Telegraph Rd.- Suite L

REPORTED

12/22/2003

Montebello, CA 90640

RECEIVED

12/12/2003

PROJECT (Ang. Chem) BL312074, BL312084

SUBMITTER Client

COMMENTS

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No.	Client Sample Identification
484434	BL312074-2
484435	BL312074-3
484436	BL312074-4
484437	BL312074-5
484438	BL312074-6
484439	BL312084-2
48 44 40	BL312084-3
484441	BL312084-4
484442	BL312084-5
484443	BL312084-6
48 4444	BL312084-7
4 8444 5	Laboratory Method Blank

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by

Edward S. Behare, Ph.D. Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental Order #:

484434

Client Sample ID: BL312074-2

Matrix: WATER

Date Sampled: 12/09/2003

<u> </u>	Analyte	Result	DLR	Units	Date/Analyst	
9060 T	otal Organic Carbon (TOC)					
	Dissolved Organic Carbon	3.0	0.5	mg/L	12/18/03 QP	-
,	Total Organic Carbon	3.71	0.5	mg/L	12/18/03 OP	_

Order #:

484435

Client Sample ID: BL312074-3

Matrix: WATER

Date Sampled: 12/09/2003

Analyte	Result DLR		Units	Date/Analyst	
Cotal Organic Carbon (TOC)					
Dissolved Organic Carbon	2.9	0.5	mg/L	12/18/03 QP	

Order #:

484436

Client Sample ID: BL312074-4

Matrix: WATER

Date Sampled: 12/09/2003

Analyte	Result	DLR	Units	Date/Analyst	
i0 Total Organic Carbon (TOC)					
Dissolved Organic Carbon	2.4	0.5	mg/L	12/18/03 QP	
Total Organic Carbon	2.61	0.5	mg/L	12/18/03 QP	

Order #:

484437

Client Sample ID: BL312074-5

Matrix: WATER

Date Sampled: 12/09/2003

	Analyte	Result	DLR	Units	Date/Analyst	
9060 7	Total Organic Carbon (TOC)					
}	Dissolved Organic Carbon	0.9	0.5	mg/L	12/18/03 QP	•
İ	Total Organic Carbon	1,2	0.5	mg/L	12/18/03 QP	-

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit

Analytical Results Report

Order #:

484438

Client Sample ID: BL312074-6

2.2			··
1 2.21			
	0.5	mg/L	12/18/03 QP
2.6	0.5	mg/L	12/18/03 QP
12084-2			
Result	DLR	Units	Date/Analyst
	_	•	•
12	0.5	mg/L	12/18/03 QP
13	0.5	mg/L	12/18/03 QP
		•	
12084-3 Result	DLR	Units	Date/Anaivst
Result	DLR	Units	Date/Analyst
	DLR	Units mg/L	Date/Analyst
	Result	Result DLR	Result DLR Units

Analyte

Date/Analyst Result DLR Units

9060 Total Organic Carbon (TOC).

12/18/03 100 2.5 QP Dissolved Organic Carbon mg/L

 $DLR = Detection \ limit \ for \ reporting \ purposes, \ \ ND = Not \ Detected \ below \ indicated \ detection \ limit \ .$

ASSOCIATED LABORATORIES

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit

Dissolved Organic Carbon

Analytical Results Report

ND

0.5

12/18/03

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit

ASSOCIATED LABORATORIES QA REPORT FORM

QC Sample:

LR 121404-1

Matrix:

WATER

Prep. Date:

12/18/03

Analysis Date:

12/18/03

ID#'s in Batch:

LR 121404

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RESULT

Reporting Units = mg/L

Test	Method	Sample Result	Spike Added	Matrix Spike	Matrix Spike Dup	%Rec MS	%Rec MSD	RPD
TOC	415,1/9060	3.7	10	13.5	13.6	98	99	l

ND = "U" - Not Detected

RPD = Relative Percent Difference of Matrix Spike and Matrix Spike Duplicate
%REC-MS & MSD = Percent Recovery of Matrix Spike & Matrix Spike Duplicate

%REC LIMIT	5 -	80 12	0
RPD LIMITS	_	20	

PREPARATION BLANK / LAB CONTROL SAMPLE RESULTS

PREP BLK LCS							
Value	Result	True	%Rec	LLimit	H.Limit		
ND	9.6	10	96	80%	120%		

Value = Preparation Blank Value; ND = Not-Detected LCS Result = Lab Control Sample Result True = True Value of LCS L.Limit / H.Limit = LCS Control Limits